You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
56 lines
2.0 KiB
56 lines
2.0 KiB
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
import mindspore.nn as nn
|
|
from mindspore.ops import operations as P
|
|
|
|
|
|
class AlexNet(nn.Cell):
|
|
def __init__(self, num_classes=10):
|
|
super(AlexNet, self).__init__()
|
|
self.batch_size = 32
|
|
self.conv1 = nn.Conv2d(3, 96, 11, stride=4, pad_mode="valid")
|
|
self.conv2 = nn.Conv2d(96, 256, 5, stride=1, pad_mode="same")
|
|
self.conv3 = nn.Conv2d(256, 384, 3, stride=1, pad_mode="same")
|
|
self.conv4 = nn.Conv2d(384, 384, 3, stride=1, pad_mode="same")
|
|
self.conv5 = nn.Conv2d(384, 256, 3, stride=1, pad_mode="same")
|
|
self.relu = P.ReLU()
|
|
self.max_pool2d = nn.MaxPool2d(kernel_size=3, stride=2)
|
|
self.flatten = nn.Flatten()
|
|
self.fc1 = nn.Dense(66256, 4096)
|
|
self.fc2 = nn.Dense(4096, 4096)
|
|
self.fc3 = nn.Dense(4096, num_classes)
|
|
|
|
def construct(self, x):
|
|
x = self.conv1(x)
|
|
x = self.relu(x)
|
|
x = self.max_pool2d(x)
|
|
x = self.conv2(x)
|
|
x = self.relu(x)
|
|
x = self.max_pool2d(x)
|
|
x = self.conv3(x)
|
|
x = self.relu(x)
|
|
x = self.conv4(x)
|
|
x = self.relu(x)
|
|
x = self.conv5(x)
|
|
x = self.relu(x)
|
|
x = self.max_pool2d(x)
|
|
x = self.flatten(x)
|
|
x = self.fc1(x)
|
|
x = self.relu(x)
|
|
x = self.fc2(x)
|
|
x = self.relu(x)
|
|
x = self.fc3(x)
|
|
return x
|