You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/ascend/test_autocast.py

267 lines
8.1 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""multitype_ops directory test case"""
import numpy as np
import pytest
import mindspore.nn as nn
from mindspore import Tensor
from mindspore import dtype as mstype
from mindspore.ops import functional as F
import mindspore.context as context
class TensorIntAutoCast(nn.Cell):
def __init__(self,):
super(TensorIntAutoCast, self).__init__()
self.i = 2
def construct(self, t):
z = F.tensor_mul(t, self.i)
return z
class TensorFPAutoCast(nn.Cell):
def __init__(self,):
super(TensorFPAutoCast, self).__init__()
self.f = 1.2
def construct(self, t):
z = F.tensor_mul(t, self.f)
return z
class TensorBoolAutoCast(nn.Cell):
def __init__(self,):
super(TensorBoolAutoCast, self).__init__()
self.f = True
def construct(self, t):
z = F.tensor_mul(t, self.f)
return z
class TensorAutoCast(nn.Cell):
def __init__(self,):
super(TensorAutoCast, self).__init__()
def construct(self, t1, t2):
z = F.tensor_mul(t1, t2)
return z
def test_tensor_auto_cast():
context.set_context(mode=context.GRAPH_MODE)
Tensor([True, False], mstype.bool_)
t_uint8 = Tensor(np.ones([2, 1, 2, 2]), mstype.uint8)
t_int8 = Tensor(np.ones([2, 1, 2, 2]), mstype.int8)
t_int16 = Tensor(np.ones([2, 1, 2, 2]), mstype.int16)
t_int32 = Tensor(np.ones([2, 1, 2, 2]), mstype.int32)
t_int64 = Tensor(np.ones([2, 1, 2, 2]), mstype.int64)
t_fp16 = Tensor(np.ones([2, 1, 2, 2]), mstype.float16)
t_fp32 = Tensor(np.ones([2, 1, 2, 2]), mstype.float32)
t_fp64 = Tensor(np.ones([2, 1, 2, 2]), mstype.float64)
net = TensorAutoCast()
rs = net(t_uint8, t_int8)
assert rs.dtype == mstype.int16
rs = net(t_uint8, t_int16)
assert rs.dtype == mstype.int16
rs = net(t_uint8, t_int32)
assert rs.dtype == mstype.int32
rs = net(t_uint8, t_int64)
assert rs.dtype == mstype.int64
rs = net(t_int8, t_int16)
assert rs.dtype == mstype.int16
rs = net(t_int8, t_int32)
assert rs.dtype == mstype.int32
rs = net(t_int8, t_int64)
assert rs.dtype == mstype.int64
rs = net(t_int16, t_int32)
assert rs.dtype == mstype.int32
rs = net(t_int16, t_int64)
assert rs.dtype == mstype.int64
rs = net(t_int32, t_int64)
assert rs.dtype == mstype.int64
rs = net(t_fp16, t_fp32)
assert rs.dtype == mstype.float32
rs = net(t_fp16, t_fp64)
assert rs.dtype == mstype.float64
rs = net(t_fp32, t_fp64)
assert rs.dtype == mstype.float64
rs = net(t_uint8, t_fp16)
assert rs.dtype == mstype.float16
rs = net(t_uint8, t_fp32)
assert rs.dtype == mstype.float32
rs = net(t_uint8, t_fp64)
assert rs.dtype == mstype.float64
rs = net(t_int8, t_fp64)
assert rs.dtype == mstype.float64
rs = net(t_int16, t_fp64)
assert rs.dtype == mstype.float64
rs = net(t_int32, t_fp64)
assert rs.dtype == mstype.float64
rs = net(t_int64, t_fp64)
assert rs.dtype == mstype.float64
rs = net(t_fp16, t_int8)
assert rs.dtype == mstype.float16
rs = net(t_fp16, t_uint8)
assert rs.dtype == mstype.float16
rs = net(t_fp16, t_int16)
assert rs.dtype == mstype.float16
rs = net(t_fp16, t_int32)
assert rs.dtype == mstype.float16
rs = net(t_fp16, t_int64)
assert rs.dtype == mstype.float16
tint = TensorIntAutoCast()
rs = tint(t_uint8)
assert rs.dtype == mstype.uint8
rs = tint(t_int8)
assert rs.dtype == mstype.int8
rs = tint(t_int16)
assert rs.dtype == mstype.int16
rs = tint(t_int32)
assert rs.dtype == mstype.int32
rs = tint(t_int64)
assert rs.dtype == mstype.int64
rs = tint(t_fp16)
assert rs.dtype == mstype.float16
rs = tint(t_fp32)
assert rs.dtype == mstype.float32
rs = tint(t_fp64)
assert rs.dtype == mstype.float64
tfp = TensorFPAutoCast()
rs = tfp(t_uint8)
assert rs.dtype == mstype.float32
rs = tfp(t_int8)
assert rs.dtype == mstype.float32
rs = tfp(t_int16)
assert rs.dtype == mstype.float32
rs = tfp(t_int32)
assert rs.dtype == mstype.float32
rs = tfp(t_int64)
assert rs.dtype == mstype.float32
rs = tfp(t_fp16)
assert rs.dtype == mstype.float32
rs = tfp(t_fp32)
assert rs.dtype == mstype.float32
rs = tfp(t_fp64)
assert rs.dtype == mstype.float64
t_uint16 = Tensor(np.ones([2, 1, 2, 2]), mstype.uint16)
t_uint32 = Tensor(np.ones([2, 1, 2, 2]), mstype.uint32)
t_uint64 = Tensor(np.ones([2, 1, 2, 2]), mstype.uint64)
with pytest.raises(TypeError):
net(t_uint16, t_uint8)
with pytest.raises(TypeError):
net(t_uint16, t_int8)
with pytest.raises(TypeError):
net(t_uint16, t_int16)
with pytest.raises(TypeError):
net(t_uint16, t_int32)
with pytest.raises(TypeError):
net(t_uint16, t_int64)
with pytest.raises(TypeError):
net(t_uint32, t_uint8)
with pytest.raises(TypeError):
net(t_uint32, t_int8)
with pytest.raises(TypeError):
net(t_uint32, t_int16)
with pytest.raises(TypeError):
net(t_uint32, t_int32)
with pytest.raises(TypeError):
net(t_uint32, t_int64)
with pytest.raises(TypeError):
net(t_uint64, t_uint8)
with pytest.raises(TypeError):
net(t_uint64, t_int8)
with pytest.raises(TypeError):
net(t_uint64, t_int16)
with pytest.raises(TypeError):
net(t_uint64, t_int32)
with pytest.raises(TypeError):
net(t_uint64, t_int64)
with pytest.raises(TypeError):
net(t_uint16, t_fp16)
with pytest.raises(TypeError):
net(t_uint16, t_fp32)
with pytest.raises(TypeError):
net(t_uint16, t_fp64)
with pytest.raises(TypeError):
net(t_uint32, t_fp16)
with pytest.raises(TypeError):
net(t_uint32, t_fp32)
with pytest.raises(TypeError):
net(t_uint32, t_fp64)
with pytest.raises(TypeError):
net(t_uint64, t_fp16)
with pytest.raises(TypeError):
net(t_uint64, t_fp32)
with pytest.raises(TypeError):
net(t_uint64, t_fp64)
with pytest.raises(TypeError):
tfp(t_uint16)
with pytest.raises(TypeError):
tfp(t_uint32)
with pytest.raises(TypeError):
tfp(t_uint64)
with pytest.raises(TypeError):
tint(t_uint16)
with pytest.raises(TypeError):
tint(t_uint32)
with pytest.raises(TypeError):
tint(t_uint64)
bnet = TensorBoolAutoCast()
with pytest.raises(TypeError):
bnet(t_uint8)
with pytest.raises(TypeError):
bnet(t_int8)
with pytest.raises(TypeError):
bnet(t_int16)
with pytest.raises(TypeError):
bnet(t_int32)
with pytest.raises(TypeError):
bnet(t_int64)
with pytest.raises(TypeError):
bnet(t_fp16)
with pytest.raises(TypeError):
bnet(t_fp32)
with pytest.raises(TypeError):
bnet(t_fp64)
def test_bool_tensor_and_float():
context.set_context(mode=context.GRAPH_MODE)
t_bool = Tensor(np.ones([2, 1, 2, 2]).astype(np.bool), mstype.bool_)
t_int32 = Tensor(np.ones([2, 1, 2, 2]), mstype.int32)
t_fp16 = Tensor(np.ones([2, 1, 2, 2]), mstype.float16)
t_fp32 = Tensor(np.ones([2, 1, 2, 2]), mstype.float32)
net = TensorFPAutoCast()
out = net(t_bool)
assert out.dtype == mstype.float32
net = TensorIntAutoCast()
out = net(t_bool)
assert out.dtype == mstype.int32
out = net(t_fp16)
assert out.dtype == mstype.float16
out = net(t_fp32)
assert out.dtype == mstype.float32
out = net(t_int32)
assert out.dtype == mstype.int32