You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/ascend/test_ops_infer.py

62 lines
2.1 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test nn ops """
import numpy as np
import mindspore.nn as nn
import mindspore.common.dtype as mstype
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore import context
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
def test_cast_op_attr():
class CastNet(nn.Cell):
def __init__(self):
super(CastNet, self).__init__()
self.cast = P.Cast()
def construct(self, x, t):
return self.cast(x, t)
class CastTypeTest(nn.Cell):
def __init__(self, net):
super(CastTypeTest, self).__init__()
self.net = net
self.cast = P.Cast()
def construct(self, x, y, z):
cast_op = self.cast
t1 = cast_op(x, mstype.float32)
t2 = cast_op(y, mstype.int32)
cast_net = self.net
t3 = cast_net(x, mstype.float16)
t4 = cast_net(y, mstype.int32)
t5 = cast_net(z, mstype.float16)
return (t1, t2, t3, t4, t5)
net = CastTypeTest(CastNet())
t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.int32))
t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32))
t3 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.int32))
out = net(t1, t2, t3)
assert out[0].asnumpy().dtype == np.float32
assert out[1].asnumpy().dtype == np.int32
assert out[2].asnumpy().dtype == np.float16
assert out[3].asnumpy().dtype == np.int32
assert out[4].asnumpy().dtype == np.float16