You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/cpu/test_addn_op.py

79 lines
2.5 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common import dtype as mstype
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
class Net2I(nn.Cell):
def __init__(self):
super(Net2I, self).__init__()
self.addn = P.AddN()
def construct(self, x, y):
return self.addn((x, y))
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_net_2Input():
x = np.arange(2 * 3 * 2).reshape(2, 3, 2).astype(np.float32)
y = np.arange(2 * 3 * 2).reshape(2, 3, 2).astype(np.float32)
addn = Net2I()
output = addn(Tensor(x, mstype.float32), Tensor(y, mstype.float32))
print("output:\n", output)
expect_result = [[[0., 2.],
[4., 6.],
[8., 10.]],
[[12., 14.],
[16., 18.],
[20., 22.]]]
assert (output.asnumpy() == expect_result).all()
class Net3I(nn.Cell):
def __init__(self):
super(Net3I, self).__init__()
self.addn = P.AddN()
def construct(self, x, y, z):
return self.addn((x, y, z))
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_net_3Input():
x = np.arange(2 * 3).reshape(2, 3).astype(np.float32)
y = np.arange(2 * 3).reshape(2, 3).astype(np.float32)
z = np.arange(2 * 3).reshape(2, 3).astype(np.float32)
addn = Net3I()
output = addn(Tensor(x, mstype.float32), Tensor(y, mstype.float32), Tensor(z, mstype.float32))
print("output:\n", output)
expect_result = [[0., 3., 6.],
[9., 12., 15]]
assert (output.asnumpy() == expect_result).all()
if __name__ == '__main__':
test_net_2Input()
test_net_3Input()