You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/cpu/test_hsigmoid_op.py

63 lines
2.0 KiB

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.ops import operations as P
from mindspore.ops.composite import GradOperation
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
class Grad(nn.Cell):
def __init__(self, network):
super(Grad, self).__init__()
self.grad = GradOperation(get_all=True, sens_param=True)
self.network = network
@ms_function
def construct(self, input_, output_grad):
return self.grad(self.network)(input_, output_grad)
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.HSigmoid = P.HSigmoid()
def construct(self, x):
return self.HSigmoid(x)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_net():
x = np.array([-1, -2, 0, 2, 1]).astype(np.float32)
hswish = Net()
y = hswish(Tensor(x))
expect = np.array([0.33333334, 0.16666667, 0.5, 0.8333333, 0.6666667]).astype(np.float32)
assert np.all(y.asnumpy() == expect)
sens = np.random.randn(5).astype(np.float32)
backword_net = Grad(Net())
output = backword_net(Tensor(x), Tensor(sens))
print(len(output))
print(output[0].asnumpy())