You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/cpu/test_l1_regularizer_op.py

89 lines
2.6 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" Test L1Regularizer """
import numpy as np
import pytest
import mindspore.nn as nn
import mindspore.context as context
from mindspore import Tensor, ms_function
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
class Net_l1_regularizer(nn.Cell):
def __init__(self, scale):
super(Net_l1_regularizer, self).__init__()
self.l1_regularizer = nn.L1Regularizer(scale)
@ms_function
def construct(self, weights):
return self.l1_regularizer(weights)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_l1_regularizer01():
scale = 0.5
weights = Tensor(np.array([[1.0, -2.0], [-3.0, 4.0]]).astype(np.float32))
l1_regularizer = Net_l1_regularizer(scale)
output = l1_regularizer(weights)
print("After l1_regularizer01 is: ", output.asnumpy())
print("output.shape: ", output.shape)
print("output.dtype: ", output.dtype)
expect = 5.0
assert np.all(output.asnumpy() == expect)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_l1_regularizer08():
scale = 0.5
net = nn.L1Regularizer(scale)
weights = Tensor(np.array([[1.0, -2.0], [-3.0, 4.0]]).astype(np.float32))
output = net(weights)
expect = 5.0
print("output : ", output.asnumpy())
assert np.all(output.asnumpy() == expect)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_l1_regularizer_input_int():
scale = 0.5
net = nn.L1Regularizer(scale)
weights = 2
try:
output = net(weights)
print("output : ", output.asnumpy())
except TypeError:
assert True
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_l1_regularizer_input_tuple():
scale = 0.5
net = nn.L1Regularizer(scale)
weights = (1, 2, 3, 4)
try:
output = net(weights)
print("output : ", output.asnumpy())
except TypeError:
assert True