You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
69 lines
1.9 KiB
69 lines
1.9 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore.context as context
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from mindspore.ops import operations as P
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
|
|
|
|
|
|
class OpNetWrapper(nn.Cell):
|
|
def __init__(self, op):
|
|
super(OpNetWrapper, self).__init__()
|
|
self.op = op
|
|
|
|
def construct(self, *inputs):
|
|
return self.op(*inputs)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_cpu
|
|
@pytest.mark.env_onecard
|
|
def test_notequal_int():
|
|
op = P.NotEqual()
|
|
op_wrapper = OpNetWrapper(op)
|
|
|
|
input_x = Tensor(np.array([1, 2, 3]).astype(np.int32))
|
|
input_y = Tensor(np.array([11, 2, 13]).astype(np.int32))
|
|
outputs = op_wrapper(input_x, input_y)
|
|
|
|
print(outputs)
|
|
assert np.allclose(outputs.asnumpy(), (True, False, True))
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_cpu
|
|
@pytest.mark.env_onecard
|
|
def test_notequal_float():
|
|
op = P.NotEqual()
|
|
op_wrapper = OpNetWrapper(op)
|
|
|
|
input_x = Tensor(np.array([1, 2, 3]).astype(np.float32))
|
|
input_y = Tensor(np.array([-1, 0, 3]).astype(np.float32))
|
|
outputs = op_wrapper(input_x, input_y)
|
|
|
|
print(outputs)
|
|
assert np.allclose(outputs.asnumpy(), (True, True, False))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_notequal_int()
|
|
test_notequal_float()
|