You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
204 lines
5.8 KiB
204 lines
5.8 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore.context as context
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from mindspore.common import dtype as mstype
|
|
from mindspore.ops import operations as P
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
|
|
|
|
|
|
class Slice(nn.Cell):
|
|
def __init__(self):
|
|
super(Slice, self).__init__()
|
|
self.slice = P.Slice()
|
|
|
|
def construct(self, x):
|
|
return self.slice(x, (0, 1, 0), (2, 1, 3))
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_cpu
|
|
@pytest.mark.env_onecard
|
|
def test_slice():
|
|
x = Tensor(
|
|
np.array([[[1, -1, 1], [2, -2, 2]], [[3, -3, 3], [4, -4, 4]], [[5, -5, 5], [6, -6, 6]]]), mstype.float32)
|
|
expect = [[[2., -2., 2.]],
|
|
[[4., -4., 4.]]]
|
|
|
|
slice_op = Slice()
|
|
output = slice_op(x)
|
|
assert (output.asnumpy() == expect).all()
|
|
|
|
|
|
class Slice2(nn.Cell):
|
|
def __init__(self):
|
|
super(Slice2, self).__init__()
|
|
self.slice = P.Slice()
|
|
|
|
def construct(self, x):
|
|
return self.slice(x, (1, 0, 0), (1, 2, 3))
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_cpu
|
|
@pytest.mark.env_onecard
|
|
def test_slice2():
|
|
x = Tensor(np.arange(3 * 2 * 3).reshape(3, 2, 3), mstype.float32)
|
|
expect = [[[6., 7., 8.],
|
|
[9., 10., 11.]]]
|
|
|
|
slice_op = Slice2()
|
|
output = slice_op(x)
|
|
assert (output.asnumpy() == expect).all()
|
|
|
|
def test_slice_float64():
|
|
data = Tensor(np.array([[[1, 1, 1], [2, 2, 2]],
|
|
[[3, 3, 3], [4, 4, 4]],
|
|
[[5, 5, 5], [6, 6, 6]]]).astype(np.float64))
|
|
slice_op = P.Slice()
|
|
output = slice_op(data, (1, 0, 0), (1, 1, 3))
|
|
expect = [[[3.0, 3.0, 3.0]]]
|
|
assert (output.asnumpy() == expect).all()
|
|
|
|
class Slice3(nn.Cell):
|
|
def __init__(self):
|
|
super(Slice3, self).__init__()
|
|
self.relu = nn.ReLU()
|
|
|
|
def construct(self, x):
|
|
return (x[..., -1], x[..., 2:1:-1], x[1:3:1, 0, ...], x[-1, 0, ...])
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_cpu
|
|
@pytest.mark.env_onecard
|
|
def test_slice3():
|
|
inputx = np.random.rand(4, 4, 4, 4).astype(np.float32)
|
|
x = Tensor(inputx)
|
|
slice_op = Slice3()
|
|
output = slice_op(x)
|
|
assert (output[0].asnumpy() == inputx[..., -1]).all()
|
|
assert (output[1].asnumpy() == inputx[..., 2:1:-1]).all()
|
|
assert (output[2].asnumpy() == inputx[1:3:1, 0, ...]).all()
|
|
assert (output[3].asnumpy() == inputx[-1, 0, ...]).all()
|
|
|
|
|
|
class Slice4(nn.Cell):
|
|
def __init__(self):
|
|
super(Slice4, self).__init__()
|
|
self.relu = nn.ReLU()
|
|
|
|
def construct(self, x):
|
|
return x[:10:1, :, 2:3:1]
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_cpu
|
|
@pytest.mark.env_onecard
|
|
def test_slice4():
|
|
inputx = np.random.rand(4, 4, 4).astype(np.float32)
|
|
x = Tensor(inputx)
|
|
slice_op = Slice4()
|
|
output = slice_op(x)
|
|
assert (output.asnumpy() == inputx[:10:1, :, 2:3:1]).all()
|
|
|
|
|
|
class Slice5(nn.Cell):
|
|
def __init__(self, begin, size):
|
|
super(Slice5, self).__init__()
|
|
self.relu = nn.ReLU()
|
|
self.slice = P.Slice()
|
|
self.begin = begin
|
|
self.size = size
|
|
|
|
def construct(self, x):
|
|
return self.slice(x, self.begin, self.size)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_cpu
|
|
@pytest.mark.env_onecard
|
|
def test_slice5():
|
|
inputx = np.arange(3 * 5 * 4).reshape(3, 5, 4).astype(np.float32)
|
|
x = Tensor(inputx)
|
|
begin = (0, 1, 0)
|
|
size = (3, 4, 4)
|
|
slice_op = Slice5(begin, size)
|
|
output = slice_op(x)
|
|
assert (output.asnumpy() == inputx[0:3:1, 1:5:1, 0:4:1]).all()
|
|
|
|
|
|
class Slice6(nn.Cell):
|
|
def __init__(self):
|
|
super(Slice6, self).__init__()
|
|
self.relu = nn.ReLU()
|
|
|
|
def construct(self, x):
|
|
return (x[-10:], x[-5:10:2, :, :], x[-10:10:1, :, -10:10:1])
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_cpu
|
|
@pytest.mark.env_onecard
|
|
def test_slice6():
|
|
inputx = np.random.rand(4, 4, 4).astype(np.float32)
|
|
x = Tensor(inputx)
|
|
slice_op = Slice6()
|
|
output = slice_op(x)
|
|
assert (output[0].asnumpy() == inputx[-10:]).all()
|
|
assert (output[1].asnumpy() == inputx[-5:10:2, :, :]).all()
|
|
assert (output[2].asnumpy() == inputx[-10:10:1, :, -10:10:1]).all()
|
|
|
|
|
|
class StridedSlice(nn.Cell):
|
|
def __init__(self, begin, end, stride):
|
|
super(StridedSlice, self).__init__()
|
|
self.begin = begin
|
|
self.end = end
|
|
self.stride = stride
|
|
self.stride_slice = P.StridedSlice()
|
|
|
|
def construct(self, x):
|
|
return self.stride_slice(x, self.begin, self.end, self.stride)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_cpu
|
|
@pytest.mark.env_onecard
|
|
def test_strided_slice_bool_type():
|
|
input_x = Tensor([[[False, False, True], [False, True, False]], [[False, True, False], [True, False, False]],
|
|
[[False, True, True], [True, False, True]]], mstype.bool_)
|
|
begin = (1, 0, 0)
|
|
end = (2, 1, 3)
|
|
stride = (1, 1, 1)
|
|
slice_op = StridedSlice(begin, end, stride)
|
|
output = slice_op(input_x)
|
|
expected_output = np.array([False, True, False])
|
|
assert (output.asnumpy() == expected_output).all()
|
|
|
|
if __name__ == '__main__':
|
|
test_slice()
|
|
test_slice2()
|
|
test_slice3()
|
|
test_slice4()
|
|
test_slice5()
|
|
test_slice6()
|
|
test_strided_slice_bool_type()
|