You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/cpu/test_slice_op.py

204 lines
5.8 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common import dtype as mstype
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
class Slice(nn.Cell):
def __init__(self):
super(Slice, self).__init__()
self.slice = P.Slice()
def construct(self, x):
return self.slice(x, (0, 1, 0), (2, 1, 3))
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_slice():
x = Tensor(
np.array([[[1, -1, 1], [2, -2, 2]], [[3, -3, 3], [4, -4, 4]], [[5, -5, 5], [6, -6, 6]]]), mstype.float32)
expect = [[[2., -2., 2.]],
[[4., -4., 4.]]]
slice_op = Slice()
output = slice_op(x)
assert (output.asnumpy() == expect).all()
class Slice2(nn.Cell):
def __init__(self):
super(Slice2, self).__init__()
self.slice = P.Slice()
def construct(self, x):
return self.slice(x, (1, 0, 0), (1, 2, 3))
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_slice2():
x = Tensor(np.arange(3 * 2 * 3).reshape(3, 2, 3), mstype.float32)
expect = [[[6., 7., 8.],
[9., 10., 11.]]]
slice_op = Slice2()
output = slice_op(x)
assert (output.asnumpy() == expect).all()
def test_slice_float64():
data = Tensor(np.array([[[1, 1, 1], [2, 2, 2]],
[[3, 3, 3], [4, 4, 4]],
[[5, 5, 5], [6, 6, 6]]]).astype(np.float64))
slice_op = P.Slice()
output = slice_op(data, (1, 0, 0), (1, 1, 3))
expect = [[[3.0, 3.0, 3.0]]]
assert (output.asnumpy() == expect).all()
class Slice3(nn.Cell):
def __init__(self):
super(Slice3, self).__init__()
self.relu = nn.ReLU()
def construct(self, x):
return (x[..., -1], x[..., 2:1:-1], x[1:3:1, 0, ...], x[-1, 0, ...])
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_slice3():
inputx = np.random.rand(4, 4, 4, 4).astype(np.float32)
x = Tensor(inputx)
slice_op = Slice3()
output = slice_op(x)
assert (output[0].asnumpy() == inputx[..., -1]).all()
assert (output[1].asnumpy() == inputx[..., 2:1:-1]).all()
assert (output[2].asnumpy() == inputx[1:3:1, 0, ...]).all()
assert (output[3].asnumpy() == inputx[-1, 0, ...]).all()
class Slice4(nn.Cell):
def __init__(self):
super(Slice4, self).__init__()
self.relu = nn.ReLU()
def construct(self, x):
return x[:10:1, :, 2:3:1]
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_slice4():
inputx = np.random.rand(4, 4, 4).astype(np.float32)
x = Tensor(inputx)
slice_op = Slice4()
output = slice_op(x)
assert (output.asnumpy() == inputx[:10:1, :, 2:3:1]).all()
class Slice5(nn.Cell):
def __init__(self, begin, size):
super(Slice5, self).__init__()
self.relu = nn.ReLU()
self.slice = P.Slice()
self.begin = begin
self.size = size
def construct(self, x):
return self.slice(x, self.begin, self.size)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_slice5():
inputx = np.arange(3 * 5 * 4).reshape(3, 5, 4).astype(np.float32)
x = Tensor(inputx)
begin = (0, 1, 0)
size = (3, 4, 4)
slice_op = Slice5(begin, size)
output = slice_op(x)
assert (output.asnumpy() == inputx[0:3:1, 1:5:1, 0:4:1]).all()
class Slice6(nn.Cell):
def __init__(self):
super(Slice6, self).__init__()
self.relu = nn.ReLU()
def construct(self, x):
return (x[-10:], x[-5:10:2, :, :], x[-10:10:1, :, -10:10:1])
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_slice6():
inputx = np.random.rand(4, 4, 4).astype(np.float32)
x = Tensor(inputx)
slice_op = Slice6()
output = slice_op(x)
assert (output[0].asnumpy() == inputx[-10:]).all()
assert (output[1].asnumpy() == inputx[-5:10:2, :, :]).all()
assert (output[2].asnumpy() == inputx[-10:10:1, :, -10:10:1]).all()
class StridedSlice(nn.Cell):
def __init__(self, begin, end, stride):
super(StridedSlice, self).__init__()
self.begin = begin
self.end = end
self.stride = stride
self.stride_slice = P.StridedSlice()
def construct(self, x):
return self.stride_slice(x, self.begin, self.end, self.stride)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_strided_slice_bool_type():
input_x = Tensor([[[False, False, True], [False, True, False]], [[False, True, False], [True, False, False]],
[[False, True, True], [True, False, True]]], mstype.bool_)
begin = (1, 0, 0)
end = (2, 1, 3)
stride = (1, 1, 1)
slice_op = StridedSlice(begin, end, stride)
output = slice_op(input_x)
expected_output = np.array([False, True, False])
assert (output.asnumpy() == expected_output).all()
if __name__ == '__main__':
test_slice()
test_slice2()
test_slice3()
test_slice4()
test_slice5()
test_slice6()
test_strided_slice_bool_type()