You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
47 lines
1.7 KiB
47 lines
1.7 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore.context as context
|
|
from mindspore import Tensor
|
|
import mindspore.ops.operations._grad_ops as P
|
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_acosgrad_fp32():
|
|
error = np.ones(4) * 1.0e-7
|
|
x_np = np.array([0, -0.25, 0.5, 0.3]).astype(np.float32)
|
|
dout_np = np.array([1, 1, 1, 1]).astype(np.float32)
|
|
output_ms = P.ACosGrad()(Tensor(x_np), Tensor(dout_np))
|
|
expect = np.array([-1, -1.0327955, -1.1547005, -1.0482849])
|
|
diff = output_ms.asnumpy() - expect
|
|
assert np.all(diff < error)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_acosgrad_fp16():
|
|
error = np.ones(4) * 1.0e-3
|
|
x_np = np.array([0, -0.25, 0.5, 0.3]).astype(np.float16)
|
|
dout_np = np.array([1, 1, 1, 1]).astype(np.float16)
|
|
output_ms = P.ACosGrad()(Tensor(x_np), Tensor(dout_np))
|
|
expect = np.array([-1, -1.033, -1.154, -1.048])
|
|
diff = output_ms.asnumpy() - expect
|
|
assert np.all(diff < error)
|