You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/gpu/test_addn_op.py

97 lines
3.8 KiB

# Copyright 2019-2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.ops import operations as P
context.set_context(device_target='GPU')
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.add = P.AddN()
@ms_function
def construct(self, x, y, z):
return self.add((x, y, z))
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_net():
x = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float32)
y = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float32)
z = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float32)
add = Net()
output = add(Tensor(x), Tensor(y), Tensor(z))
expect_result = [[[[0., 3., 6., 9.],
[12., 15., 18., 21.],
[24., 27., 30., 33.]],
[[36., 39., 42., 45.],
[48., 51., 54., 57.],
[60., 63., 66., 69.]],
[[72., 75., 78., 81.],
[84., 87., 90., 93.],
[96., 99., 102., 105.]]]]
assert (output.asnumpy() == expect_result).all()
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_net_float64():
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
x = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float64)
y = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float64)
z = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float64)
add = Net()
output = add(Tensor(x), Tensor(y), Tensor(z))
expect_result = np.array([[[[0., 3., 6., 9.],
[12., 15., 18., 21.],
[24., 27., 30., 33.]],
[[36., 39., 42., 45.],
[48., 51., 54., 57.],
[60., 63., 66., 69.]],
[[72., 75., 78., 81.],
[84., 87., 90., 93.],
[96., 99., 102., 105.]]]]).astype(np.float64)
assert (output.asnumpy() == expect_result).all()
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
x = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float64)
y = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float64)
z = np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4).astype(np.float64)
add = Net()
output = add(Tensor(x), Tensor(y), Tensor(z))
expect_result = np.array([[[[0., 3., 6., 9.],
[12., 15., 18., 21.],
[24., 27., 30., 33.]],
[[36., 39., 42., 45.],
[48., 51., 54., 57.],
[60., 63., 66., 69.]],
[[72., 75., 78., 81.],
[84., 87., 90., 93.],
[96., 99., 102., 105.]]]]).astype(np.float64)
assert (output.asnumpy() == expect_result).all()