You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/gpu/test_assign_op.py

73 lines
2.2 KiB

# Copyright 2020-2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor, Parameter
from mindspore.ops import operations as P
class Net(nn.Cell):
def __init__(self, param):
super(Net, self).__init__()
self.var = Parameter(param, name="var")
self.assign = P.Assign()
def construct(self, param):
return self.assign(self.var, param)
x = np.array([[1.2, 1], [1, 0]]).astype(np.float32)
value = np.array([[1, 2], [3, 4.0]]).astype(np.float32)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_assign():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
var = Tensor(x)
assign = Net(var)
output = assign(Tensor(value))
error = np.ones(shape=[2, 2]) * 1.0e-6
diff1 = output.asnumpy() - value
diff2 = assign.var.data.asnumpy() - value
assert np.all(diff1 < error)
assert np.all(-diff1 < error)
assert np.all(diff2 < error)
assert np.all(-diff2 < error)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_assign_float64():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
var = Tensor(x.astype(np.float64))
assign = Net(var)
output = assign(Tensor(value.astype(np.float64)))
error = np.ones(shape=[2, 2]) * 1.0e-6
diff1 = output.asnumpy() - value
diff2 = assign.var.data.asnumpy() - value
assert np.all(diff1 < error)
assert np.all(-diff1 < error)
assert np.all(diff2 < error)
assert np.all(-diff2 < error)