You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/gpu/test_determinant_triangle.py

45 lines
1.5 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.common import dtype as mstype
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
class Net(nn.Cell):
def __init__(self, fill_mode=0):
super(Net, self).__init__()
self.det_triangle = P.DetTriangle(fill_mode=fill_mode)
def construct(self, x):
return self.det_triangle(x)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_net_1D():
fill_mode = 0
input_x = np.array([[1, 0, 0], [2, 3, 0], [4, 5, 6]]).astype(np.float32)
net = Net(fill_mode=fill_mode)
tx = Tensor(input_x, mstype.float32)
output = net(tx)
assert output == 18