You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/gpu/test_dropout.py

100 lines
3.5 KiB

# Copyright 2020-2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.nn as nn
from mindspore import Tensor
import mindspore.context as context
from mindspore.ops import operations as P
from mindspore.ops.operations import _inner_ops as inner
class Net(nn.Cell):
def __init__(self, keep_prob):
super(Net, self).__init__()
self.drop = P.Dropout(keep_prob)
def construct(self, x_):
return self.drop(x_)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_dropout():
x_shape = [32, 16, 2, 5]
x = np.ones(x_shape).astype(np.float32)
keep_prob = 0.4
dropout = Net(keep_prob)
tx = Tensor(x)
output, mask = dropout(tx)
# check output
output_np = output.asnumpy()
elem_count = x.size
nonzero_count = np.count_nonzero(output_np)
assert (elem_count * (keep_prob - 0.1)) < nonzero_count < (elem_count * (keep_prob + 0.1))
output_sum = np.sum(output_np)
x_sum = np.sum(x)
assert abs(output_sum - x_sum)/x_sum < 0.1
# check mask
mask_np = mask.asnumpy()
mask_sum = np.sum(mask_np)
assert np.count_nonzero(mask_np) == nonzero_count
assert abs(mask_sum - nonzero_count)/nonzero_count < 0.1
class DropoutDynamic(nn.Cell):
def __init__(self, keep_prob):
super(DropoutDynamic, self).__init__()
self.test_dynamic = inner.GpuConvertToDynamicShape()
self.drop = P.Dropout(keep_prob)
def construct(self, x):
x = self.test_dynamic(x)
return self.drop(x)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_dropout_dynamic():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
x_1 = np.ones([32, 16, 2, 5]).astype(np.float32)
x_2 = np.ones([32, 16, 2, 5, 6]).astype(np.float32)
keep_prob = 0.4
net = DropoutDynamic(keep_prob)
output_1, mask_1 = net(Tensor(x_1))
elem_count_1 = x_1.size
nonzero_count_1 = np.count_nonzero(output_1.asnumpy())
assert (elem_count_1 * (keep_prob - 0.1)) < nonzero_count_1 < (elem_count_1 * (keep_prob + 0.1))
output_sum_1 = np.sum(output_1.asnumpy())
x_sum_1 = np.sum(x_1)
assert abs(output_sum_1 - x_sum_1)/x_sum_1 < 0.1
mask_sum_1 = np.sum(mask_1.asnumpy())
assert np.count_nonzero(mask_1.asnumpy()) == nonzero_count_1
assert abs(mask_sum_1 - nonzero_count_1)/nonzero_count_1 < 0.1
output_2, mask_2 = net(Tensor(x_2))
elem_count_2 = x_2.size
nonzero_count_2 = np.count_nonzero(output_2.asnumpy())
assert (elem_count_2 * (keep_prob - 0.1)) < nonzero_count_2 < (elem_count_2 * (keep_prob + 0.1))
output_sum_2 = np.sum(output_2.asnumpy())
x_sum_2 = np.sum(x_2)
assert abs(output_sum_2 - x_sum_2)/x_sum_2 < 0.1
mask_sum_2 = np.sum(mask_2.asnumpy())
assert np.count_nonzero(mask_2.asnumpy()) == nonzero_count_2
assert abs(mask_sum_2 - nonzero_count_2)/nonzero_count_2 < 0.1