You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/gpu/test_flatten_op.py

143 lines
4.4 KiB

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
class NetFlatten(nn.Cell):
def __init__(self):
super(NetFlatten, self).__init__()
self.flatten = P.Flatten()
def construct(self, x):
return self.flatten(x)
class NetAllFlatten(nn.Cell):
def __init__(self):
super(NetAllFlatten, self).__init__()
self.flatten = P.Flatten()
def construct(self, x):
loop_count = 4
while loop_count > 0:
x = self.flatten(x)
loop_count = loop_count - 1
return x
class NetFirstFlatten(nn.Cell):
def __init__(self):
super(NetFirstFlatten, self).__init__()
self.flatten = P.Flatten()
self.relu = P.ReLU()
def construct(self, x):
loop_count = 4
while loop_count > 0:
x = self.flatten(x)
loop_count = loop_count - 1
x = self.relu(x)
return x
class NetLastFlatten(nn.Cell):
def __init__(self):
super(NetLastFlatten, self).__init__()
self.flatten = P.Flatten()
self.relu = P.ReLU()
def construct(self, x):
loop_count = 4
x = self.relu(x)
while loop_count > 0:
x = self.flatten(x)
loop_count = loop_count - 1
return x
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_flatten():
x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]).astype(np.float32))
expect = np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]).astype(np.float32)
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
flatten = NetFlatten()
output = flatten(x)
assert (output.asnumpy() == expect).all()
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
flatten = NetFlatten()
output = flatten(x)
assert (output.asnumpy() == expect).all()
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_all_flatten():
x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]).astype(np.float32))
expect = np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]).astype(np.float32)
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
flatten = NetAllFlatten()
output = flatten(x)
assert (output.asnumpy() == expect).all()
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
flatten = NetAllFlatten()
output = flatten(x)
assert (output.asnumpy() == expect).all()
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_first_flatten():
x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]).astype(np.float32))
expect = np.array([[0, 0.3, 3.6], [0.4, 0.5, 0]]).astype(np.float32)
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
flatten = NetFirstFlatten()
output = flatten(x)
assert (output.asnumpy() == expect).all()
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
flatten = NetFirstFlatten()
output = flatten(x)
assert (output.asnumpy() == expect).all()
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_last_flatten():
x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]).astype(np.float32))
expect = np.array([[0, 0.3, 3.6], [0.4, 0.5, 0]]).astype(np.float32)
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
flatten = NetLastFlatten()
output = flatten(x)
assert (output.asnumpy() == expect).all()
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
flatten = NetLastFlatten()
output = flatten(x)
assert (output.asnumpy() == expect).all()