You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/gpu/test_index_add_op.py

373 lines
13 KiB

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor, Parameter, ParameterTuple
from mindspore.ops import operations as P
from mindspore.ops import composite as C
class NetIndexAdd(nn.Cell):
def __init__(self, x, axis):
super(NetIndexAdd, self).__init__()
self.input_x = Parameter(Tensor(x), name='x')
self.index_add = P.IndexAdd(axis)
def construct(self, idx, y):
z = self.index_add(self.input_x, idx, y)
return z
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_index_add():
x = np.arange(2 * 3 * 4 * 4).reshape(2, 3, 4, 4).astype(np.float32)
y0 = np.ones((1, 3, 4, 4), dtype=np.float32)
idx0 = np.array([1]).astype(np.int32)
axis0 = 0
expect = np.copy(x)
expect[idx0, :, :, :] = expect[idx0, :, :, :] + y0
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
net = NetIndexAdd(x, axis0)
output = net(Tensor(idx0), Tensor(y0))
assert (output.asnumpy() == expect).all()
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = NetIndexAdd(x, axis0)
output = net(Tensor(idx0), Tensor(y0))
assert (output.asnumpy() == expect).all()
y1 = np.ndarray((2, 2, 4, 4)).astype(np.float32)
y1.fill(0.1)
idx1 = np.array([0, 2]).astype(np.int32)
axis1 = 1
expect = np.copy(x)
expect[:, idx1, :, :] = expect[:, idx1, :, :] + y1
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
net = NetIndexAdd(x, axis1)
output = net(Tensor(idx1), Tensor(y1))
assert (output.asnumpy() == expect).all()
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = NetIndexAdd(x, axis1)
output = net(Tensor(idx1), Tensor(y1))
assert (output.asnumpy() == expect).all()
y2 = np.ones((2, 3, 2, 4)).astype(np.float32)
y2.fill(5.5)
idx2 = np.array([1, 3]).astype(np.int32)
axis2 = 2
expect = np.copy(x)
expect[:, :, idx2, :] = expect[:, :, idx2, :] + y2
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
net = NetIndexAdd(x, axis2)
output = net(Tensor(idx2), Tensor(y2))
assert (output.asnumpy() == expect).all()
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = NetIndexAdd(x, axis2)
output = net(Tensor(idx2), Tensor(y2))
assert (output.asnumpy() == expect).all()
y3 = np.ones((2, 3, 4, 3)).astype(np.float32)
y3.fill(1000.00)
idx3 = np.array([0, 2, 3]).astype(np.int32)
axis3 = 3
expect = np.copy(x)
expect[:, :, :, idx3] = expect[:, :, :, idx3] + y3
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
net = NetIndexAdd(x, axis3)
output = net(Tensor(idx3), Tensor(y3))
assert (output.asnumpy() == expect).all()
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = NetIndexAdd(x, axis3)
output = net(Tensor(idx3), Tensor(y3))
assert (output.asnumpy() == expect).all()
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_index_add_float16():
x = np.arange(2 * 3 * 4).reshape(2, 3, 4).astype(np.float16)
y = np.ones((2, 2, 4), dtype=np.float16)
idx = np.array([0, 2]).astype(np.int32)
axis = 1
expect = np.copy(x)
expect[:, idx, :] = expect[:, idx, :] + y
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
net = NetIndexAdd(x, axis)
output = net(Tensor(idx), Tensor(y))
assert (output.asnumpy() == expect).all()
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = NetIndexAdd(x, axis)
output = net(Tensor(idx), Tensor(y))
assert (output.asnumpy() == expect).all()
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_index_add_int32():
x = np.arange(2 * 3 * 4).reshape(2, 3, 4).astype(np.int32)
y = np.ones((2, 2, 4), dtype=np.int32)
idx = np.array([0, 2]).astype(np.int32)
axis = 1
expect = np.copy(x)
expect[:, idx, :] = expect[:, idx, :] + y
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
net = NetIndexAdd(x, axis)
output = net(Tensor(idx), Tensor(y))
assert (output.asnumpy() == expect).all()
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = NetIndexAdd(x, axis)
output = net(Tensor(idx), Tensor(y))
assert (output.asnumpy() == expect).all()
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_index_add_int8():
x = np.arange(2 * 3 * 4).reshape(2, 3, 4).astype(np.int8)
y = np.ones((2, 2, 4), dtype=np.int8)
idx = np.array([0, 2]).astype(np.int32)
axis = 1
expect = np.copy(x)
expect[:, idx, :] = expect[:, idx, :] + y
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
net = NetIndexAdd(x, axis)
output = net(Tensor(idx), Tensor(y))
assert (output.asnumpy() == expect).all()
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = NetIndexAdd(x, axis)
output = net(Tensor(idx), Tensor(y))
assert (output.asnumpy() == expect).all()
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_index_add_uint8():
x = np.arange(2 * 3 * 4).reshape(2, 3, 4).astype(np.uint8)
y = np.ones((2, 2, 4), dtype=np.uint8)
idx = np.array([0, 2]).astype(np.int32)
axis = 1
expect = np.copy(x)
expect[:, idx, :] = expect[:, idx, :] + y
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
net = NetIndexAdd(x, axis)
output = net(Tensor(idx), Tensor(y))
assert (output.asnumpy() == expect).all()
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = NetIndexAdd(x, axis)
output = net(Tensor(idx), Tensor(y))
assert (output.asnumpy() == expect).all()
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_index_add_float64():
x = np.arange(2 * 3 * 4).reshape(2, 3, 4).astype(np.float64)
y = np.ones((2, 2, 4), dtype=np.float64)
idx = np.array([0, 2]).astype(np.int32)
axis = 1
expect = np.copy(x)
expect[:, idx, :] = expect[:, idx, :] + y
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
net = NetIndexAdd(x, axis)
output = net(Tensor(idx), Tensor(y))
assert (output.asnumpy() == expect).all()
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = NetIndexAdd(x, axis)
output = net(Tensor(idx), Tensor(y))
assert (output.asnumpy() == expect).all()
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_index_add_int16():
x = np.arange(2 * 3 * 4).reshape(2, 3, 4).astype(np.int16)
y = np.ones((2, 2, 4), dtype=np.int16)
idx = np.array([0, 2]).astype(np.int32)
axis = 1
expect = np.copy(x)
expect[:, idx, :] = expect[:, idx, :] + y
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
net = NetIndexAdd(x, axis)
output = net(Tensor(idx), Tensor(y))
assert (output.asnumpy() == expect).all()
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = NetIndexAdd(x, axis)
output = net(Tensor(idx), Tensor(y))
assert (output.asnumpy() == expect).all()
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_index_add_invalid_inputs():
x = np.arange(2 * 3 * 4).reshape(2, 3, 4).astype(np.uint8)
y = np.ones((2, 2, 4), dtype=np.uint8)
with pytest.raises(TypeError):
#axis not int
net = NetIndexAdd(x, 1.0)
#x and y don't have the same type
y = np.ones((2, 2, 4), dtype=np.float32)
idx = np.array([0, 1]).astype(np.int32)
net = NetIndexAdd(x, 1)
_ = net(Tensor(idx), Tensor(y))
with pytest.raises(ValueError):
#index size not the same as len(y[axis])
idx = np.array([0]).astype(np.int32)
net = NetIndexAdd(x, 1)
_ = net(Tensor(idx), Tensor(y))
#x and y don't have same rank
y = np.ones((2, 2), dtype=np.uint8)
idx = np.array([0, 1]).astype(np.int32)
net = NetIndexAdd(x, 1)
_ = net(Tensor(idx), Tensor(y))
#x and y don't have same shape on dimensions other than axis-th dimension
y = np.ones((2, 2, 5), dtype=np.uint8)
idx = np.array([0, 1]).astype(np.int32)
net = NetIndexAdd(x, 1)
_ = net(Tensor(idx), Tensor(y))
with pytest.raises(RuntimeError) as info:
#index value not in the range of 0 to len(x[axis])
idx = np.array([5, 6]).astype(np.int32)
net = NetIndexAdd(x, 1)
_ = net(Tensor(idx), Tensor(y))
assert "out of range" in str(info.value)
class IndexAddGradNet(nn.Cell):
def __init__(self, network):
super(IndexAddGradNet, self).__init__()
self.grad = C.GradOperation(get_all=True, sens_param=True, get_by_list=True)
self.network = network
self.params = ParameterTuple(network.trainable_params())
def construct(self, idx, y, dout):
out = self.grad(self.network, self.params)(idx, y, dout)
return out
def index_add_grad_with_type(nptype):
x = np.arange(15).reshape(5, 3).astype(nptype)
net = NetIndexAdd(x, 1)
grad_net = IndexAddGradNet(net)
y = Tensor(np.arange(5).reshape(5, 1).astype(nptype))
dout = Tensor(np.array([[63., 64., 65.],
[66., 67., 68.],
[69., 70., 71.],
[72., 73., 74.],
[75., 76., 77.]]).astype(nptype))
index = Tensor(np.array([1]), dtype=mindspore.int32)
output = grad_net(index, y, dout)
ygrad = output[0][1]
xgrad = output[1][0]
expect_xgrad = np.array([[63., 64., 65.],
[66., 67., 68.],
[69., 70., 71.],
[72., 73., 74.],
[75., 76., 77.]]).astype(nptype)
expect_ygrad = np.array([[64.],
[67.],
[70.],
[73.],
[76.]]).astype(nptype)
np.testing.assert_array_equal(xgrad.asnumpy(), expect_xgrad)
np.testing.assert_array_equal(ygrad.asnumpy(), expect_ygrad)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_index_add_grad_float64():
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
index_add_grad_with_type(np.float64)
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
index_add_grad_with_type(np.float64)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_index_add_grad_float32():
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
index_add_grad_with_type(np.float32)
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
index_add_grad_with_type(np.float32)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_index_add_grad_float16():
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
index_add_grad_with_type(np.float16)
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
index_add_grad_with_type(np.float16)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_index_add_grad_int32():
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
index_add_grad_with_type(np.int32)
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
index_add_grad_with_type(np.int32)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_index_add_grad_int16():
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
index_add_grad_with_type(np.int16)
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
index_add_grad_with_type(np.int16)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_index_add_grad_int8():
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
index_add_grad_with_type(np.int8)
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
index_add_grad_with_type(np.int8)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_index_add_grad_uint8():
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
index_add_grad_with_type(np.uint8)
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
index_add_grad_with_type(np.uint8)