You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
87 lines
3.3 KiB
87 lines
3.3 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore.context as context
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from mindspore.ops import composite as C
|
|
from mindspore.ops import operations as P
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
|
|
|
|
class Net(nn.Cell):
|
|
def __init__(self, reduction="none"):
|
|
super(Net, self).__init__()
|
|
self.KLDivLoss = P.KLDivLoss("none")
|
|
|
|
def construct(self, x, y):
|
|
return self.KLDivLoss(x, y)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_binary_cross_entropy_loss():
|
|
np.random.seed(42)
|
|
prediction = np.random.rand(20).astype(np.float32)
|
|
target = np.random.rand(20).astype(np.float32)
|
|
net = Net()
|
|
loss = net(Tensor(prediction), Tensor(target))
|
|
expect = [-0.5297444, -0.40738472, -0.5733339, -0.58720195, -0.42922008, -0.31237593,
|
|
-0.3332863, -0.78742254, -0.6662671, -0.17546377, -0.31526336, -0.46702948,
|
|
-0.23191005, -0.2512708, -0.20934652, -0.32021108, -0.45477402, -0.278453,
|
|
-0.5551879, -0.48938933]
|
|
assert np.allclose(loss.asnumpy(), expect)
|
|
|
|
|
|
class Grad(nn.Cell):
|
|
def __init__(self, network):
|
|
super(Grad, self).__init__()
|
|
self.grad = C.GradOperation(get_all=True, sens_param=True)
|
|
self.network = network
|
|
|
|
def construct(self, x1, x2, sens):
|
|
gout = self.grad(self.network)(x1, x2, sens)
|
|
return gout
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_binary_cross_entropy_loss_grad():
|
|
np.random.seed(42)
|
|
prediction = np.random.rand(20).astype(np.float32)
|
|
target = np.random.rand(20).astype(np.float32)
|
|
sens = np.random.rand(20).astype(np.float32)
|
|
grad = Grad(Net())
|
|
dx = grad(Tensor(prediction), Tensor(target), Tensor(sens))
|
|
|
|
dx1_expect = [-0.07466945, -0.06907414, -0.01004642, -0.3331403, -0.11802178, -0.52019656,
|
|
-0.06224053, -0.2674369, -0.32387912, -0.00858657, -0.58906615, -0.13217884,
|
|
-0.06111591, -0.8490888, -0.57735133, -0.7452407, -0.02695603, -0.01914206,
|
|
-0.03094601, -0.14319494]
|
|
|
|
dx2_expect = [0.0163771, -0.950962, -0.03309895, -0.5481312, 0.01523498, 0.39894313,
|
|
-0.20858267, -0.27628726, -0.06815486, -0.5134226, 0.46645382, -1.3477919,
|
|
-2.409831, 0.65787154, 0.4682768, 0.55671424, -0.04362264, -0.36274382,
|
|
0.00852979, -0.03639247]
|
|
|
|
assert np.allclose(dx[0].asnumpy(), dx1_expect)
|
|
assert np.allclose(dx[1].asnumpy(), dx2_expect)
|