You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/gpu/test_loss.py

113 lines
3.7 KiB

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test loss """
import numpy as np
import pytest
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.nn.loss.loss import _Loss
from mindspore.nn.loss.loss import L1Loss
import mindspore.context as context
class WeightedLoss(_Loss):
def __init__(self, reduction='mean', weights=1.0):
super(WeightedLoss, self).__init__(reduction)
self.abs = P.Abs()
self.weights = weights
def construct(self, base, target):
x = self.abs(base - target)
return self.get_loss(x, self.weights)
def weighted_loss(nptype):
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
loss = WeightedLoss()
input_data = Tensor(np.array([[1, 2, 3], [2, 3, 4]]).astype(nptype))
target_data = Tensor(np.array([[0, 2, 5], [3, 1, 1]]).astype(nptype))
output_data = loss(input_data, target_data)
error_range = np.ones(shape=output_data.shape) * 10e-6
loss = WeightedLoss(weights=2.0)
test_output = loss(input_data, target_data)
diff = test_output - output_data * 2.0
assert np.all(abs(diff.asnumpy()) < error_range)
loss = WeightedLoss(weights=3)
test_output = loss(input_data, target_data)
diff = test_output - output_data * 3
assert np.all(abs(diff.asnumpy()) < error_range)
loss = WeightedLoss(weights=Tensor(np.array([[0.7, 0.3], [0.7, 0.3]]).astype(nptype)))
y_true = Tensor(np.array([[0., 1.], [0., 0.]]).astype(nptype))
y_pred = Tensor(np.array([[1., 1.], [1., 0.]]).astype(nptype))
test_data = 0.35
output = loss(y_true, y_pred)
diff = test_data - output.asnumpy()
assert np.all(abs(diff) < error_range)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_weighted_loss_float32():
weighted_loss(np.float32)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_weighted_loss_float64():
weighted_loss(np.float64)
class CustomLoss(_Loss):
def __init__(self, reduction='mean'):
super(CustomLoss, self).__init__(reduction)
self.abs = P.Abs()
def construct(self, base, target):
x = self.abs(base - target)
return self.get_loss(x, weights=2.0)
def custom_loss(nptype):
loss = L1Loss()
input_data = Tensor(np.array([[1, 2, 3], [2, 3, 4]]).astype(nptype))
target_data = Tensor(np.array([[0, 2, 5], [3, 1, 1]]).astype(nptype))
output_data = loss(input_data, target_data)
error_range = np.ones(shape=output_data.shape) * 10e-6
customloss = CustomLoss()
test_output = customloss(input_data, target_data)
diff = test_output - output_data * 2.0
assert np.all(abs(diff.asnumpy()) < error_range)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_custom_loss_float16():
custom_loss(np.float16)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_custom_loss_float32():
custom_loss(np.float32)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_custom_loss_float64():
custom_loss(np.float64)