You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/gpu/test_reciprocal_grad_op.py

92 lines
3.5 KiB

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops.operations import _grad_ops as G
class NetReciprocalGrad(nn.Cell):
def __init__(self):
super(NetReciprocalGrad, self).__init__()
self.grad = G.ReciprocalGrad()
def construct(self, y, dy):
return self.grad(y, dy)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_reciprocal_grad_float32():
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
y = Tensor(np.array([[[[-1, 1, 12],
[5, 34, 6],
[10, 2, -1]]]]).astype(np.float32))
dy = Tensor(np.array([[[[29, 1, 55],
[2.2, 63, 2],
[3, 3, 12]]]]).astype(np.float32))
expect = np.array([[[[-29, -1, -7920],
[-55, -72828, -72],
[-300, -12, -12]]]]).astype(np.float32)
net = NetReciprocalGrad()
output = net(y, dy)
np.testing.assert_array_almost_equal(output.asnumpy(), expect)
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
y = Tensor(np.array([[[[-1, 1, 12],
[5, 34, 6],
[10, 2, -1]]]]).astype(np.float32))
dy = Tensor(np.array([[[[29, 1, 55],
[2.2, 63, 2],
[3, 3, 12]]]]).astype(np.float32))
expect = np.array([[[[-29, -1, -7920],
[-55, -72828, -72],
[-300, -12, -12]]]]).astype(np.float32)
net = NetReciprocalGrad()
output = net(y, dy)
np.testing.assert_array_almost_equal(output.asnumpy(), expect)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_reciprocal_grad_float16():
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
y = Tensor(np.array([[0.01, 0.2, 0.22],
[10.002, 2, -1]]).astype(np.float16))
dy = Tensor(np.array([[34, 1, 55],
[3, 3, 63]]).astype(np.float16))
expect = np.array([[-0.0034, -0.03998, -2.662],
[-300, -12, -63]]).astype(np.float16)
net = NetReciprocalGrad()
output = net(y, dy)
np.testing.assert_array_almost_equal(output.asnumpy(), expect)
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
y = Tensor(np.array([[0.01, 0.2, 0.22],
[10.002, 2, -1]]).astype(np.float16))
dy = Tensor(np.array([[34, 1, 55],
[3, 3, 63]]).astype(np.float16))
expect = np.array([[-0.0034, -0.03998, -2.662],
[-300, -12, -63]]).astype(np.float16)
net = NetReciprocalGrad()
output = net(y, dy)
np.testing.assert_array_almost_equal(output.asnumpy(), expect)