You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
318 lines
10 KiB
318 lines
10 KiB
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore.context as context
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from mindspore.common.api import ms_function
|
|
from mindspore.ops import operations as P
|
|
from mindspore.ops.operations import _inner_ops as inner
|
|
|
|
x0 = np.random.rand(2, 3, 4, 4).astype(np.float32)
|
|
axis0 = 3
|
|
keep_dims0 = True
|
|
|
|
x1 = np.random.rand(2, 3, 4, 4).astype(np.float32)
|
|
axis1 = 3
|
|
keep_dims1 = False
|
|
|
|
x2 = np.random.rand(2, 3, 1, 4).astype(np.float32)
|
|
axis2 = 2
|
|
keep_dims2 = True
|
|
|
|
x3 = np.random.rand(2, 3, 1, 4).astype(np.float32)
|
|
axis3 = 2
|
|
keep_dims3 = False
|
|
|
|
x4 = np.random.rand(2, 3, 4, 1).astype(np.float32)
|
|
axis4 = 3
|
|
keep_dims4 = True
|
|
|
|
x5 = np.random.rand(2, 3, 4, 1).astype(np.float32)
|
|
axis5 = 3
|
|
keep_dims5 = False
|
|
|
|
x6 = np.random.rand(2, 3, 4, 4).astype(np.float32)
|
|
axis6 = (1, 2)
|
|
keep_dims6 = False
|
|
|
|
x7 = np.random.rand(2, 3, 4, 4).astype(np.float32)
|
|
axis7 = (1, 2)
|
|
keep_dims7 = True
|
|
|
|
x8 = np.random.rand(2, 1, 1, 4).astype(np.float32)
|
|
axis8 = (1, 2)
|
|
keep_dims8 = True
|
|
|
|
x9 = np.random.rand(2, 1, 1, 4).astype(np.float32)
|
|
axis9 = (1, 2)
|
|
keep_dims9 = False
|
|
|
|
x10 = np.random.rand(2, 3, 4, 4).astype(np.float32)
|
|
axis10 = (0, 1, 2, 3)
|
|
keep_dims10 = False
|
|
|
|
x11 = np.random.rand(1, 1, 1, 1).astype(np.float32)
|
|
axis11 = (0, 1, 2, 3)
|
|
keep_dims11 = False
|
|
|
|
x12 = np.random.rand(2, 3, 4, 4, 5, 6).astype(np.float32)
|
|
axis12 = -2
|
|
keep_dims12 = False
|
|
|
|
x13 = np.random.rand(2, 3, 4, 4).astype(np.float32)
|
|
axis13 = (-2, -1)
|
|
keep_dims13 = True
|
|
|
|
x14 = np.random.rand(1, 1, 1, 1).astype(np.float32)
|
|
axis14 = ()
|
|
np_axis14 = None
|
|
keep_dims14 = True
|
|
|
|
context.set_context(device_target='GPU')
|
|
|
|
|
|
class ReduceMean(nn.Cell):
|
|
def __init__(self):
|
|
super(ReduceMean, self).__init__()
|
|
|
|
self.x0 = Tensor(x0)
|
|
self.axis0 = axis0
|
|
self.keep_dims0 = keep_dims0
|
|
|
|
self.x1 = Tensor(x1)
|
|
self.axis1 = axis1
|
|
self.keep_dims1 = keep_dims1
|
|
|
|
self.x2 = Tensor(x2)
|
|
self.axis2 = axis2
|
|
self.keep_dims2 = keep_dims2
|
|
|
|
self.x3 = Tensor(x3)
|
|
self.axis3 = axis3
|
|
self.keep_dims3 = keep_dims3
|
|
|
|
self.x4 = Tensor(x4)
|
|
self.axis4 = axis4
|
|
self.keep_dims4 = keep_dims4
|
|
|
|
self.x5 = Tensor(x5)
|
|
self.axis5 = axis5
|
|
self.keep_dims5 = keep_dims5
|
|
|
|
self.x6 = Tensor(x6)
|
|
self.axis6 = axis6
|
|
self.keep_dims6 = keep_dims6
|
|
|
|
self.x7 = Tensor(x7)
|
|
self.axis7 = axis7
|
|
self.keep_dims7 = keep_dims7
|
|
|
|
self.x8 = Tensor(x8)
|
|
self.axis8 = axis8
|
|
self.keep_dims8 = keep_dims8
|
|
|
|
self.x9 = Tensor(x9)
|
|
self.axis9 = axis9
|
|
self.keep_dims9 = keep_dims9
|
|
|
|
self.x10 = Tensor(x10)
|
|
self.axis10 = axis10
|
|
self.keep_dims10 = keep_dims10
|
|
|
|
self.x11 = Tensor(x11)
|
|
self.axis11 = axis11
|
|
self.keep_dims11 = keep_dims11
|
|
|
|
self.x12 = Tensor(x12)
|
|
self.axis12 = axis12
|
|
self.keep_dims12 = keep_dims12
|
|
|
|
self.x13 = Tensor(x13)
|
|
self.axis13 = axis13
|
|
self.keep_dims13 = keep_dims13
|
|
|
|
self.x14 = Tensor(x14)
|
|
self.axis14 = axis14
|
|
self.keep_dims14 = keep_dims14
|
|
|
|
@ms_function
|
|
def construct(self):
|
|
return (P.ReduceMean(self.keep_dims0)(self.x0, self.axis0),
|
|
P.ReduceMean(self.keep_dims1)(self.x1, self.axis1),
|
|
P.ReduceMean(self.keep_dims2)(self.x2, self.axis2),
|
|
P.ReduceMean(self.keep_dims3)(self.x3, self.axis3),
|
|
P.ReduceMean(self.keep_dims4)(self.x4, self.axis4),
|
|
P.ReduceMean(self.keep_dims5)(self.x5, self.axis5),
|
|
P.ReduceMean(self.keep_dims6)(self.x6, self.axis6),
|
|
P.ReduceMean(self.keep_dims7)(self.x7, self.axis7),
|
|
P.ReduceMean(self.keep_dims8)(self.x8, self.axis8),
|
|
P.ReduceMean(self.keep_dims9)(self.x9, self.axis9),
|
|
P.ReduceMean(self.keep_dims10)(self.x10, self.axis10),
|
|
P.ReduceMean(self.keep_dims11)(self.x11, self.axis11),
|
|
P.ReduceMean(self.keep_dims12)(self.x12, self.axis12),
|
|
P.ReduceMean(self.keep_dims13)(self.x13, self.axis13),
|
|
P.ReduceMean(self.keep_dims14)(self.x14, self.axis14))
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_ReduceMean():
|
|
reduce_mean = ReduceMean()
|
|
output = reduce_mean()
|
|
|
|
expect0 = np.mean(x0, axis=axis0, keepdims=keep_dims0)
|
|
diff0 = abs(output[0].asnumpy() - expect0)
|
|
error0 = np.ones(shape=expect0.shape) * 1.0e-5
|
|
assert np.all(diff0 < error0)
|
|
assert output[0].shape == expect0.shape
|
|
|
|
expect1 = np.mean(x1, axis=axis1, keepdims=keep_dims1)
|
|
diff1 = abs(output[1].asnumpy() - expect1)
|
|
error1 = np.ones(shape=expect1.shape) * 1.0e-5
|
|
assert np.all(diff1 < error1)
|
|
assert output[1].shape == expect1.shape
|
|
|
|
expect2 = np.mean(x2, axis=axis2, keepdims=keep_dims2)
|
|
diff2 = abs(output[2].asnumpy() - expect2)
|
|
error2 = np.ones(shape=expect2.shape) * 1.0e-5
|
|
assert np.all(diff2 < error2)
|
|
assert output[2].shape == expect2.shape
|
|
|
|
expect3 = np.mean(x3, axis=axis3, keepdims=keep_dims3)
|
|
diff3 = abs(output[3].asnumpy() - expect3)
|
|
error3 = np.ones(shape=expect3.shape) * 1.0e-5
|
|
assert np.all(diff3 < error3)
|
|
assert output[3].shape == expect3.shape
|
|
|
|
expect4 = np.mean(x4, axis=axis4, keepdims=keep_dims4)
|
|
diff4 = abs(output[4].asnumpy() - expect4)
|
|
error4 = np.ones(shape=expect4.shape) * 1.0e-5
|
|
assert np.all(diff4 < error4)
|
|
assert output[4].shape == expect4.shape
|
|
|
|
expect5 = np.mean(x5, axis=axis5, keepdims=keep_dims5)
|
|
diff5 = abs(output[5].asnumpy() - expect5)
|
|
error5 = np.ones(shape=expect5.shape) * 1.0e-5
|
|
assert np.all(diff5 < error5)
|
|
assert output[5].shape == expect5.shape
|
|
|
|
expect6 = np.mean(x6, axis=axis6, keepdims=keep_dims6)
|
|
diff6 = abs(output[6].asnumpy() - expect6)
|
|
error6 = np.ones(shape=expect6.shape) * 1.0e-5
|
|
assert np.all(diff6 < error6)
|
|
assert output[6].shape == expect6.shape
|
|
|
|
expect7 = np.mean(x7, axis=axis7, keepdims=keep_dims7)
|
|
diff7 = abs(output[7].asnumpy() - expect7)
|
|
error7 = np.ones(shape=expect7.shape) * 1.0e-5
|
|
assert np.all(diff7 < error7)
|
|
assert output[7].shape == expect7.shape
|
|
|
|
expect8 = np.mean(x8, axis=axis8, keepdims=keep_dims8)
|
|
diff8 = abs(output[8].asnumpy() - expect8)
|
|
error8 = np.ones(shape=expect8.shape) * 1.0e-5
|
|
assert np.all(diff8 < error8)
|
|
assert output[8].shape == expect8.shape
|
|
|
|
expect9 = np.mean(x9, axis=axis9, keepdims=keep_dims9)
|
|
diff9 = abs(output[9].asnumpy() - expect9)
|
|
error9 = np.ones(shape=expect9.shape) * 1.0e-5
|
|
assert np.all(diff9 < error9)
|
|
assert output[9].shape == expect9.shape
|
|
|
|
expect10 = np.mean(x10, axis=axis10, keepdims=keep_dims10)
|
|
diff10 = abs(output[10].asnumpy() - expect10)
|
|
error10 = np.ones(shape=expect10.shape) * 1.0e-5
|
|
assert np.all(diff10 < error10)
|
|
assert output[10].shape == expect10.shape
|
|
|
|
expect11 = np.mean(x11, axis=axis11, keepdims=keep_dims11)
|
|
diff11 = abs(output[11].asnumpy() - expect11)
|
|
error11 = np.ones(shape=expect11.shape) * 1.0e-5
|
|
assert np.all(diff11 < error11)
|
|
assert output[11].shape == expect11.shape
|
|
|
|
expect12 = np.mean(x12, axis=axis12, keepdims=keep_dims12)
|
|
diff12 = abs(output[12].asnumpy() - expect12)
|
|
error12 = np.ones(shape=expect12.shape) * 1.0e-5
|
|
assert np.all(diff12 < error12)
|
|
assert output[12].shape == expect12.shape
|
|
|
|
expect13 = np.mean(x13, axis=axis13, keepdims=keep_dims13)
|
|
diff13 = abs(output[13].asnumpy() - expect13)
|
|
error13 = np.ones(shape=expect13.shape) * 1.0e-5
|
|
assert np.all(diff13 < error13)
|
|
assert output[13].shape == expect13.shape
|
|
|
|
expect14 = np.mean(x14, axis=np_axis14, keepdims=keep_dims14)
|
|
diff14 = abs(output[14].asnumpy() - expect14)
|
|
error14 = np.ones(shape=expect14.shape) * 1.0e-5
|
|
assert np.all(diff14 < error14)
|
|
assert output[14].shape == expect14.shape
|
|
|
|
class ReduceMeanDynamic(nn.Cell):
|
|
def __init__(self, x, axis, keepdims=False):
|
|
super(ReduceMeanDynamic, self).__init__()
|
|
self.test_dynamic = inner.GpuConvertToDynamicShape()
|
|
self.reducemean = P.ReduceMean(keep_dims=keepdims)
|
|
self.x = x
|
|
self.axis = axis
|
|
|
|
def construct(self):
|
|
dynamic_x = self.test_dynamic(self.x)
|
|
output = self.reducemean(dynamic_x, self.axis)
|
|
return output
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_dynamic_reduce_mean_keepdims_true():
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
net1 = ReduceMeanDynamic(Tensor(x14), axis14, keepdims=True)
|
|
net2 = ReduceMeanDynamic(Tensor(x0), axis0, keepdims=True)
|
|
output1 = net1()
|
|
output2 = net2()
|
|
|
|
expect_1 = np.mean(x14, axis=np_axis14, keepdims=True)
|
|
diff_1 = abs(output1.asnumpy() - expect_1)
|
|
error_1 = np.ones(shape=expect_1.shape) * 1.0e-5
|
|
assert np.all(diff_1 < error_1)
|
|
assert output1.shape == expect_1.shape
|
|
|
|
expect_2 = np.mean(x0, axis=axis0, keepdims=True)
|
|
diff_2 = abs(output2.asnumpy() - expect_2)
|
|
error_2 = np.ones(shape=expect_2.shape) * 1.0e-5
|
|
assert np.all(diff_2 < error_2)
|
|
assert output2.shape == expect_2.shape
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_dynamic_reduce_mean_keepdims_false():
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
net = ReduceMeanDynamic(Tensor(x12), axis12, keepdims=False)
|
|
output = net()
|
|
|
|
expect = np.mean(x12, axis=axis12, keepdims=False)
|
|
diff = abs(output.asnumpy() - expect)
|
|
error = np.ones(shape=expect.shape) * 1.0e-5
|
|
assert np.all(diff < error)
|
|
assert output.shape == expect.shape
|