You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
176 lines
5.9 KiB
176 lines
5.9 KiB
# Copyright 2019-2021 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore.context as context
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from mindspore.ops import operations as P
|
|
from mindspore.ops.operations import _inner_ops as inner
|
|
|
|
class NetZerosLike(nn.Cell):
|
|
def __init__(self):
|
|
super(NetZerosLike, self).__init__()
|
|
self.zeros_like = P.ZerosLike()
|
|
|
|
def construct(self, x):
|
|
return self.zeros_like(x)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_ZerosLike():
|
|
x0_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)
|
|
x1_np = np.random.uniform(-2, 2, 1).astype(np.float32)
|
|
|
|
x0 = Tensor(x0_np)
|
|
x1 = Tensor(x1_np)
|
|
|
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
|
zeros_like = NetZerosLike()
|
|
output0 = zeros_like(x0)
|
|
expect0 = np.zeros_like(x0_np)
|
|
diff0 = output0.asnumpy() - expect0
|
|
error0 = np.ones(shape=expect0.shape) * 1.0e-5
|
|
assert np.all(diff0 < error0)
|
|
assert output0.shape == expect0.shape
|
|
|
|
output1 = zeros_like(x1)
|
|
expect1 = np.zeros_like(x1_np)
|
|
diff1 = output1.asnumpy() - expect1
|
|
error1 = np.ones(shape=expect1.shape) * 1.0e-5
|
|
assert np.all(diff1 < error1)
|
|
assert output1.shape == expect1.shape
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
zeros_like = NetZerosLike()
|
|
output0 = zeros_like(x0)
|
|
expect0 = np.zeros_like(x0_np)
|
|
diff0 = output0.asnumpy() - expect0
|
|
error0 = np.ones(shape=expect0.shape) * 1.0e-5
|
|
assert np.all(diff0 < error0)
|
|
assert output0.shape == expect0.shape
|
|
|
|
output1 = zeros_like(x1)
|
|
expect1 = np.zeros_like(x1_np)
|
|
diff1 = output1.asnumpy() - expect1
|
|
error1 = np.ones(shape=expect1.shape) * 1.0e-5
|
|
assert np.all(diff1 < error1)
|
|
assert output1.shape == expect1.shape
|
|
|
|
|
|
class ZerosLikeDynamicNet(nn.Cell):
|
|
def __init__(self):
|
|
super(ZerosLikeDynamicNet, self).__init__()
|
|
self.gpu_convert_to_dynamic_shape = inner.GpuConvertToDynamicShape()
|
|
self.zeros_like = P.ZerosLike()
|
|
|
|
def construct(self, x):
|
|
converted_to_dynamic = self.gpu_convert_to_dynamic_shape(x)
|
|
return self.zeros_like(converted_to_dynamic)
|
|
|
|
|
|
def zeros_like_dynamic(x):
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
net = ZerosLikeDynamicNet()
|
|
return net(x)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_zeros_like_dynamic_bool():
|
|
x = Tensor(np.arange(120).reshape(3, 4, 1, 2, 5).astype(np.bool))
|
|
output = zeros_like_dynamic(x)
|
|
expected = np.zeros([3, 4, 1, 2, 5])
|
|
np.testing.assert_array_equal(output.asnumpy(), expected)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_zeros_like_dynamic_int8():
|
|
x = Tensor(np.arange(24).reshape(1, 4, 1, 6).astype(np.int8))
|
|
output = zeros_like_dynamic(x)
|
|
expected = np.zeros([1, 4, 1, 6])
|
|
np.testing.assert_array_equal(output.asnumpy(), expected)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_zeros_like_dynamic_uint8():
|
|
x = Tensor(np.arange(30).reshape(3, 2, 5).astype(np.uint8))
|
|
output = zeros_like_dynamic(x)
|
|
expected = np.zeros([3, 2, 5])
|
|
np.testing.assert_array_equal(output.asnumpy(), expected)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_zeros_like_dynamic_int32():
|
|
x = Tensor(np.arange(16).reshape(2, 2, 2, 2).astype(np.int32))
|
|
output = zeros_like_dynamic(x)
|
|
expected = np.zeros([2, 2, 2, 2])
|
|
np.testing.assert_array_equal(output.asnumpy(), expected)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_zeros_like_dynamic_float16():
|
|
x = Tensor(np.arange(120).reshape(3, 4, 1, 2, 5).astype(np.float16))
|
|
output = zeros_like_dynamic(x)
|
|
expected = np.zeros([3, 4, 1, 2, 5])
|
|
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_zeros_like_dynamic_float32():
|
|
x = Tensor(np.arange(63).reshape(3, 7, 3).astype(np.float32))
|
|
output = zeros_like_dynamic(x)
|
|
expected = np.zeros([3, 7, 3])
|
|
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_zeros_like_dynamic_float64():
|
|
x = Tensor(np.arange(2).reshape(2, 1, 1).astype(np.float64))
|
|
output = zeros_like_dynamic(x)
|
|
expected = np.zeros([2, 1, 1])
|
|
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_zeros_like_dynamic_multiple_inputs():
|
|
net = ZerosLikeDynamicNet()
|
|
|
|
x = Tensor(np.arange(4).reshape(4).astype(np.float32))
|
|
output = net(x)
|
|
expected = np.zeros([4])
|
|
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
|
|
|
|
x = Tensor(np.arange(8).reshape(2, 1, 2, 2).astype(np.uint8))
|
|
output = net(x)
|
|
expected = np.zeros([2, 1, 2, 2])
|
|
np.testing.assert_array_equal(output.asnumpy(), expected)
|
|
|
|
x = Tensor(np.arange(1).reshape(1).astype(np.float16))
|
|
output = net(x)
|
|
expected = np.zeros([1])
|
|
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
|