You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/graph_kernel/test_matmul.py

89 lines
3.0 KiB

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
from mindspore import Tensor
from mindspore.nn import Cell
import mindspore.ops.operations as P
class Net(Cell):
def __init__(self):
super(Net, self).__init__()
self.matmul = P.MatMul(transpose_a=True, transpose_b=True)
def construct(self, x, y):
return self.matmul(x, y)
class Net1(Cell):
def __init__(self):
super(Net1, self).__init__()
self.matmul = P.MatMul(transpose_a=True, transpose_b=True)
self.add = P.BiasAdd()
def construct(self, x, y, bias):
res = self.matmul(x, y)
return self.add(res, bias)
def get_output(i0, i1, enable_graph_kernel=False):
if enable_graph_kernel:
context.set_context(enable_graph_kernel=True, save_graphs=False)
net = Net()
output = net(i0, i1)
return output
def get_output1(i0, i1, i2, enable_graph_kernel=False):
if enable_graph_kernel:
context.set_context(enable_graph_kernel=True, save_graphs=False)
net = Net1()
output = net(i0, i1, i2)
return output
def test_basic():
i0 = Tensor(np.random.normal(1, 0.01, [800, 96]).astype(np.float16))
i1 = Tensor(np.random.normal(1, 0.01, [128, 800]).astype(np.float16))
expect = get_output(i0, i1, False)
output = get_output(i0, i1, True)
expect_np = expect.asnumpy().copy()
output_np = output.asnumpy().copy()
assert np.allclose(expect_np, output_np, 1.e-4, 1.e-7)
def test_basic1():
i0 = Tensor(np.random.normal(1, 0.01, [800, 96]).astype(np.float16))
i1 = Tensor(np.random.normal(1, 0.01, [128, 800]).astype(np.float16))
i2 = Tensor(np.random.normal(100, 0.01, [128,]).astype(np.float16))
expect = get_output1(i0, i1, i2, False)
output = get_output1(i0, i1, i2, True)
expect_np = expect.asnumpy().copy()
output_np = output.asnumpy().copy()
assert np.allclose(expect_np, output_np, 6.e-4, 6.e-4)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_basic_ascend():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
test_basic()
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_basic_ascend1():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
test_basic1()