You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
91 lines
3.0 KiB
91 lines
3.0 KiB
# Copyright 2021 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore.context as context
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from mindspore.ops import operations as P
|
|
from mindspore.ops.operations import _grad_ops as G
|
|
|
|
|
|
class NetSigmoid(nn.Cell):
|
|
def __init__(self):
|
|
super(NetSigmoid, self).__init__()
|
|
self.sigmoid = P.Sigmoid()
|
|
|
|
def construct(self, x):
|
|
return self.sigmoid(x)
|
|
|
|
|
|
class NetSigmoidGrad(nn.Cell):
|
|
def __init__(self):
|
|
super(NetSigmoidGrad, self).__init__()
|
|
self.sigmoid_grad = G.SigmoidGrad()
|
|
|
|
def construct(self, y, dy):
|
|
return self.sigmoid_grad(y, dy)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_sigmoid():
|
|
x = Tensor(np.array([[[[-1, 1, 10],
|
|
[1, -1, 1],
|
|
[10, 1, -1]]]]).astype(np.float32))
|
|
|
|
error = np.ones(shape=[1, 1, 3, 3]) * 1.0e-6
|
|
|
|
context.set_context(mode=context.GRAPH_MODE,
|
|
enable_graph_kernel=True, device_target="GPU")
|
|
net = NetSigmoid()
|
|
result_open_gk = net(x)
|
|
|
|
context.set_context(mode=context.GRAPH_MODE,
|
|
enable_graph_kernel=False, device_target="GPU")
|
|
net_beta = NetSigmoid()
|
|
result_close_gk = net_beta(x)
|
|
diff = result_open_gk.asnumpy() - result_close_gk.asnumpy()
|
|
assert np.all(abs(diff) < error)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_sigmoid_grad():
|
|
y = Tensor(np.array([[[[-1, 1, 2],
|
|
[1, -1, 1],
|
|
[2, 1, -1]]]]).astype(np.float32))
|
|
dy = Tensor(np.array([[[[-11, 2, 4],
|
|
[-1, 1, -1],
|
|
[-4, 4, -4]]]]).astype(np.float32))
|
|
|
|
error = np.ones(shape=[1, 1, 3, 3]) * 1.0e-6
|
|
|
|
context.set_context(mode=context.GRAPH_MODE,
|
|
enable_graph_kernel=True, device_target="GPU")
|
|
net = NetSigmoidGrad()
|
|
result_open_gk = net(y, dy)
|
|
|
|
context.set_context(mode=context.GRAPH_MODE,
|
|
enable_graph_kernel=False, device_target="GPU")
|
|
net_beta = NetSigmoidGrad()
|
|
result_close_gk = net_beta(y, dy)
|
|
diff = result_open_gk.asnumpy() - result_close_gk.asnumpy()
|
|
assert np.all(abs(diff) < error)
|