You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/graph_kernel/test_simplify.py

82 lines
2.6 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
from mindspore import Tensor
from mindspore.nn import Cell
import mindspore.ops.operations as P
class Net(Cell):
def __init__(self):
super(Net, self).__init__()
self.add = P.Add()
self.sub = P.Sub()
self.mul = P.Mul()
self.div = P.RealDiv()
self.sqrt = P.Sqrt()
self.pow = P.Pow()
self.neg = P.Neg()
self.reducemin = P.ReduceMin()
self.reshape = P.Reshape()
def construct(self, x, y):
add_res1 = self.add(x, 4)
add_res2 = self.add(add_res1, 5)
sub_res = self.sub(y, 3)
mul_res = self.mul(self.sqrt(add_res2), self.sqrt(sub_res))
div_res = self.div(mul_res, self.sqrt(mul_res))
pow_res = self.pow(y, 2)
neg_res = self.neg(self.neg(pow_res))
add_res3 = self.add(neg_res, div_res)
resh_res = self.reshape(add_res3, (2, 12, 3))
return self.reducemin(resh_res, 1)
def test_basic():
input_x = np.random.normal(0, 1, [2, 3, 4, 3]).astype(np.float32)
input_y = np.random.normal(0, 1, [2, 3, 4, 3]).astype(np.float32)
input_y = np.abs(input_y) + 3
add_res = input_x + 9
sub_res = input_y + (-3)
mul_res = np.sqrt(add_res * sub_res)
div_res = np.sqrt(mul_res)
pow_res = input_y * input_y
neg_res = pow_res
add_res3 = neg_res + div_res
expect = np.min(add_res3, (1, 2))
net = Net()
result = net(Tensor(input_x), Tensor(input_y))
res = np.allclose(expect, result.asnumpy(), rtol=1.e-4,
atol=1.e-7, equal_nan=True)
assert res
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_basic_gpu():
context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="GPU")
test_basic()
def test_basic_ascend():
context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="Ascend")
test_basic()