You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/probability/bijector/test_gumbel_cdf.py

109 lines
3.4 KiB

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""test cases for gumbel_cdf"""
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
import mindspore.nn.probability.bijector as msb
from mindspore import Tensor
from mindspore import dtype
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Net(nn.Cell):
"""
Test class: forward pass of bijector.
"""
def __init__(self, loc, scale):
super(Net, self).__init__()
self.bijector = msb.GumbelCDF(loc, scale)
def construct(self, x_):
return self.bijector.forward(x_)
def test_forward():
loc = np.array([0.0])
scale = np.array([[1.0], [2.0]])
forward = Net(loc, scale)
x = np.array([-2., -1., 0., 1., 2.]).astype(np.float32)
ans = forward(Tensor(x, dtype=dtype.float32))
tol = 1e-6
expected = np.exp(-np.exp(-(x - loc)/scale))
assert (np.abs(ans.asnumpy() - expected) < tol).all()
class Net1(nn.Cell):
"""
Test class: backward pass of bijector.
"""
def __init__(self, loc, scale):
super(Net1, self).__init__()
self.bijector = msb.GumbelCDF(loc, scale)
def construct(self, x_):
return self.bijector.inverse(x_)
def test_backward():
loc = np.array([0.0])
scale = np.array([[1.0], [2.0]])
backward = Net1(loc, scale)
x = np.array([0.1, 0.25, 0.5, 0.75, 0.9]).astype(np.float32)
ans = backward(Tensor(x, dtype=dtype.float32))
tol = 1e-6
expected = loc - scale * np.log(-np.log(x))
assert (np.abs(ans.asnumpy() - expected) < tol).all()
class Net2(nn.Cell):
"""
Test class: Forward Jacobian.
"""
def __init__(self, loc, scale):
super(Net2, self).__init__()
self.bijector = msb.GumbelCDF(loc, scale)
def construct(self, x_):
return self.bijector.forward_log_jacobian(x_)
def test_forward_jacobian():
loc = np.array([0.0])
scale = np.array([[1.0], [2.0]])
forward_jacobian = Net2(loc, scale)
x = np.array([-2., -1., 0., 1., 2.]).astype(np.float32)
ans = forward_jacobian(Tensor(x))
z = (x - loc) / scale
expected = -z - np.exp(-z) - np.log(scale)
tol = 1e-6
assert (np.abs(ans.asnumpy() - expected) < tol).all()
class Net3(nn.Cell):
"""
Test class: Backward Jacobian.
"""
def __init__(self, loc, scale):
super(Net3, self).__init__()
self.bijector = msb.GumbelCDF(loc, scale)
def construct(self, x_):
return self.bijector.inverse_log_jacobian(x_)
def test_backward_jacobian():
loc = np.array([0.0])
scale = np.array([[1.0], [2.0]])
backward_jacobian = Net3(loc, scale)
x = np.array([0.1, 0.2, 0.5, 0.75, 0.9]).astype(np.float32)
ans = backward_jacobian(Tensor(x))
expected = np.log(scale / (-x * np.log(x)))
tol = 1e-6
assert (np.abs(ans.asnumpy() - expected) < tol).all()