You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
64 lines
2.3 KiB
64 lines
2.3 KiB
# Copyright 2021 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""test cases for categorical distribution"""
|
|
|
|
import numpy as np
|
|
import mindspore.context as context
|
|
import mindspore.nn as nn
|
|
import mindspore.nn.probability.distribution as msd
|
|
from mindspore import Tensor
|
|
from mindspore import dtype as ms
|
|
import pytest
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
|
|
def generate_probs(seed, shape):
|
|
np.random.seed(seed)
|
|
probs = np.random.dirichlet(np.ones(shape[3]), size=1)
|
|
for _ in range(shape[0] - 1):
|
|
for _ in range(shape[1] - 1):
|
|
for _ in range(shape[2] - 1):
|
|
probs = np.vstack(((np.random.dirichlet(np.ones(shape[3]), size=1)), probs))
|
|
probs = np.array([probs, probs])
|
|
probs = np.array([probs, probs])
|
|
return probs
|
|
|
|
|
|
class CategoricalProb(nn.Cell):
|
|
def __init__(self, probs, seed=10, dtype=ms.int32, name='Categorical'):
|
|
super().__init__()
|
|
self.b = msd.Categorical(probs, seed, dtype, name)
|
|
|
|
def construct(self, value, probs=None):
|
|
out1 = self.b.prob(value, probs)
|
|
out2 = self.b.log_prob(value, probs)
|
|
out3 = self.b.cdf(value, probs)
|
|
out4 = self.b.log_cdf(value, probs)
|
|
out5 = self.b.survival_function(value, probs)
|
|
out6 = self.b.log_survival(value, probs)
|
|
return out1, out2, out3, out4, out5, out6
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_probability_categorical_prob_cdf_probs_none():
|
|
probs = None
|
|
probs1 = generate_probs(3, shape=(2, 2, 1, 64))
|
|
value = np.random.randint(0, 63, size=(64)).astype(np.float32)
|
|
net = CategoricalProb(probs)
|
|
net(Tensor(value), Tensor(probs1))
|