You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/dataset/test_bounding_box_augment.py

277 lines
12 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing the bounding box augment op in DE
"""
import numpy as np
import mindspore.log as logger
import mindspore.dataset as ds
import mindspore.dataset.vision.c_transforms as c_vision
from util import visualize_with_bounding_boxes, InvalidBBoxType, check_bad_bbox, \
config_get_set_seed, config_get_set_num_parallel_workers, save_and_check_md5
GENERATE_GOLDEN = False
# updated VOC dataset with correct annotations
DATA_DIR = "../data/dataset/testVOC2012_2"
DATA_DIR_2 = ["../data/dataset/testCOCO/train/",
"../data/dataset/testCOCO/annotations/train.json"] # DATA_DIR, ANNOTATION_DIR
def test_bounding_box_augment_with_rotation_op(plot_vis=False):
"""
Test BoundingBoxAugment op (passing rotation op as transform)
Prints images side by side with and without Aug applied + bboxes to compare and test
"""
logger.info("test_bounding_box_augment_with_rotation_op")
original_seed = config_get_set_seed(0)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", usage="train", shuffle=False, decode=True)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", usage="train", shuffle=False, decode=True)
# Ratio is set to 1 to apply rotation on all bounding boxes.
test_op = c_vision.BoundingBoxAugment(c_vision.RandomRotation(90), 1)
# map to apply ops
dataVoc2 = dataVoc2.map(operations=[test_op], input_columns=["image", "bbox"],
output_columns=["image", "bbox"],
column_order=["image", "bbox"])
filename = "bounding_box_augment_rotation_c_result.npz"
save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN)
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataVoc1.create_dict_iterator(num_epochs=1, output_numpy=True),
dataVoc2.create_dict_iterator(num_epochs=1, output_numpy=True)):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)
# Restore config setting
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers(original_num_parallel_workers)
def test_bounding_box_augment_with_crop_op(plot_vis=False):
"""
Test BoundingBoxAugment op (passing crop op as transform)
Prints images side by side with and without Aug applied + bboxes to compare and test
"""
logger.info("test_bounding_box_augment_with_crop_op")
original_seed = config_get_set_seed(0)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", usage="train", shuffle=False, decode=True)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", usage="train", shuffle=False, decode=True)
# Ratio is set to 0.9 to apply RandomCrop of size (50, 50) on 90% of the bounding boxes.
test_op = c_vision.BoundingBoxAugment(c_vision.RandomCrop(50), 0.9)
# map to apply ops
dataVoc2 = dataVoc2.map(operations=[test_op], input_columns=["image", "bbox"],
output_columns=["image", "bbox"],
column_order=["image", "bbox"])
filename = "bounding_box_augment_crop_c_result.npz"
save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN)
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataVoc1.create_dict_iterator(num_epochs=1, output_numpy=True),
dataVoc2.create_dict_iterator(num_epochs=1, output_numpy=True)):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)
# Restore config setting
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers(original_num_parallel_workers)
def test_bounding_box_augment_valid_ratio_c(plot_vis=False):
"""
Test BoundingBoxAugment op (testing with valid ratio, less than 1.
Prints images side by side with and without Aug applied + bboxes to compare and test
"""
logger.info("test_bounding_box_augment_valid_ratio_c")
original_seed = config_get_set_seed(1)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", usage="train", shuffle=False, decode=True)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", usage="train", shuffle=False, decode=True)
test_op = c_vision.BoundingBoxAugment(c_vision.RandomHorizontalFlip(1), 0.9)
# map to apply ops
dataVoc2 = dataVoc2.map(operations=[test_op], input_columns=["image", "bbox"],
output_columns=["image", "bbox"],
column_order=["image", "bbox"]) # Add column for "bbox"
filename = "bounding_box_augment_valid_ratio_c_result.npz"
save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN)
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataVoc1.create_dict_iterator(num_epochs=1, output_numpy=True),
dataVoc2.create_dict_iterator(num_epochs=1, output_numpy=True)):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)
# Restore config setting
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers(original_num_parallel_workers)
def test_bounding_box_augment_op_coco_c(plot_vis=False):
"""
Prints images and bboxes side by side with and without BoundingBoxAugment Op applied,
Testing with COCO dataset
"""
logger.info("test_bounding_box_augment_op_coco_c")
dataCoco1 = ds.CocoDataset(DATA_DIR_2[0], annotation_file=DATA_DIR_2[1], task="Detection",
decode=True, shuffle=False)
dataCoco2 = ds.CocoDataset(DATA_DIR_2[0], annotation_file=DATA_DIR_2[1], task="Detection",
decode=True, shuffle=False)
test_op = c_vision.BoundingBoxAugment(c_vision.RandomHorizontalFlip(1), 1)
dataCoco2 = dataCoco2.map(operations=[test_op], input_columns=["image", "bbox"],
output_columns=["image", "bbox"],
column_order=["image", "bbox"])
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataCoco1.create_dict_iterator(num_epochs=1, output_numpy=True),
dataCoco2.create_dict_iterator(num_epochs=1, output_numpy=True)):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp, "bbox")
def test_bounding_box_augment_valid_edge_c(plot_vis=False):
"""
Test BoundingBoxAugment op (testing with valid edge case, box covering full image).
Prints images side by side with and without Aug applied + bboxes to compare and test
"""
logger.info("test_bounding_box_augment_valid_edge_c")
original_seed = config_get_set_seed(1)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", usage="train", shuffle=False, decode=True)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", usage="train", shuffle=False, decode=True)
test_op = c_vision.BoundingBoxAugment(c_vision.RandomHorizontalFlip(1), 1)
# map to apply ops
# Add column for "bbox"
dataVoc1 = dataVoc1.map(
operations=lambda img, bbox: (img, np.array([[0, 0, img.shape[1], img.shape[0], 0, 0, 0]]).astype(np.float32)),
input_columns=["image", "bbox"],
output_columns=["image", "bbox"],
column_order=["image", "bbox"])
dataVoc2 = dataVoc2.map(
operations=lambda img, bbox: (img, np.array([[0, 0, img.shape[1], img.shape[0], 0, 0, 0]]).astype(np.float32)),
input_columns=["image", "bbox"],
output_columns=["image", "bbox"],
column_order=["image", "bbox"])
dataVoc2 = dataVoc2.map(operations=[test_op], input_columns=["image", "bbox"],
output_columns=["image", "bbox"],
column_order=["image", "bbox"])
filename = "bounding_box_augment_valid_edge_c_result.npz"
save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN)
unaugSamp, augSamp = [], []
for unAug, Aug in zip(dataVoc1.create_dict_iterator(num_epochs=1, output_numpy=True),
dataVoc2.create_dict_iterator(num_epochs=1, output_numpy=True)):
unaugSamp.append(unAug)
augSamp.append(Aug)
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)
# Restore config setting
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers(original_num_parallel_workers)
def test_bounding_box_augment_invalid_ratio_c():
"""
Test BoundingBoxAugment op with invalid input ratio
"""
logger.info("test_bounding_box_augment_invalid_ratio_c")
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", usage="train", shuffle=False, decode=True)
try:
# ratio range is from 0 - 1
test_op = c_vision.BoundingBoxAugment(c_vision.RandomHorizontalFlip(1), 1.5)
# map to apply ops
dataVoc2 = dataVoc2.map(operations=[test_op], input_columns=["image", "bbox"],
output_columns=["image", "bbox"],
column_order=["image", "bbox"]) # Add column for "bbox"
except ValueError as error:
logger.info("Got an exception in DE: {}".format(str(error)))
assert "Input ratio is not within the required interval of [0.0, 1.0]." in str(error)
def test_bounding_box_augment_invalid_bounds_c():
"""
Test BoundingBoxAugment op with invalid bboxes.
"""
logger.info("test_bounding_box_augment_invalid_bounds_c")
test_op = c_vision.BoundingBoxAugment(c_vision.RandomHorizontalFlip(1),
1)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", usage="train", shuffle=False, decode=True)
check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.WidthOverflow, "bounding boxes is out of bounds of the image")
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", usage="train", shuffle=False, decode=True)
check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.HeightOverflow, "bounding boxes is out of bounds of the image")
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", usage="train", shuffle=False, decode=True)
check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.NegativeXY, "negative value")
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", usage="train", shuffle=False, decode=True)
check_bad_bbox(dataVoc2, test_op, InvalidBBoxType.WrongShape, "4 features")
if __name__ == "__main__":
# set to false to not show plots
test_bounding_box_augment_with_rotation_op(plot_vis=False)
test_bounding_box_augment_with_crop_op(plot_vis=False)
test_bounding_box_augment_op_coco_c(plot_vis=False)
test_bounding_box_augment_valid_ratio_c(plot_vis=False)
test_bounding_box_augment_valid_edge_c(plot_vis=False)
test_bounding_box_augment_invalid_ratio_c()
test_bounding_box_augment_invalid_bounds_c()