You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/dataset/test_deviceop_cpu.py

148 lines
4.0 KiB

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import time
import mindspore.dataset as ds
import mindspore.dataset.vision.c_transforms as vision
from mindspore import log as logger
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
TF_FILES = ["../data/dataset/testTFTestAllTypes/test.data"]
TF_SCHEMA_FILE = "../data/dataset/testTFTestAllTypes/datasetSchema.json"
def test_case_0():
"""
Test Repeat
"""
# apply dataset operations
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
# define parameters
repeat_count = 2
data = data.repeat(repeat_count)
data = data.device_que()
data.send()
time.sleep(0.1)
data.stop_send()
def test_case_1():
"""
Test Batch
"""
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
# define data augmentation parameters
resize_height, resize_width = 224, 224
# define map operations
decode_op = vision.Decode()
resize_op = vision.Resize((resize_height, resize_width))
# apply map operations on images
data = data.map(operations=decode_op, input_columns=["image"])
data = data.map(operations=resize_op, input_columns=["image"])
batch_size = 3
data = data.batch(batch_size, drop_remainder=True)
data = data.device_que()
data.send()
time.sleep(0.1)
data.stop_send()
def test_case_2():
"""
Test Batch & Repeat
"""
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
# define data augmentation parameters
resize_height, resize_width = 224, 224
# define map operations
decode_op = vision.Decode()
resize_op = vision.Resize((resize_height, resize_width))
# apply map operations on images
data = data.map(operations=decode_op, input_columns=["image"])
data = data.map(operations=resize_op, input_columns=["image"])
batch_size = 2
data = data.batch(batch_size, drop_remainder=True)
data = data.repeat(2)
data = data.device_que()
assert data.get_repeat_count() == 2
data.send()
time.sleep(0.1)
data.stop_send()
def test_case_3():
"""
Test Repeat & Batch
"""
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
# define data augmentation parameters
resize_height, resize_width = 224, 224
# define map operations
decode_op = vision.Decode()
resize_op = vision.Resize((resize_height, resize_width))
# apply map operations on images
data = data.map(operations=decode_op, input_columns=["image"])
data = data.map(operations=resize_op, input_columns=["image"])
data = data.repeat(2)
batch_size = 2
data = data.batch(batch_size, drop_remainder=True)
data = data.device_que()
data.send()
time.sleep(0.1)
data.stop_send()
def test_case_tf_file():
data = ds.TFRecordDataset(TF_FILES, TF_SCHEMA_FILE, shuffle=ds.Shuffle.FILES)
data = data.to_device()
data.send()
time.sleep(0.1)
data.stop_send()
if __name__ == '__main__':
logger.info('===========now test Repeat============')
test_case_0()
logger.info('===========now test Batch============')
test_case_1()
logger.info('===========now test Batch & Repeat============')
test_case_2()
logger.info('===========now test Repeat & Batch============')
test_case_3()
logger.info('===========now test tf file============')
test_case_tf_file()