You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/dataset/test_eager_vision.py

130 lines
4.3 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import cv2
import numpy as np
from PIL import Image
import mindspore.dataset.vision.c_transforms as C
from mindspore import log as logger
def test_eager_decode():
img = np.fromfile("../data/dataset/apple.jpg", dtype=np.uint8)
logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
img = C.Decode()(img)
logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
assert img.shape == (2268, 4032, 3)
def test_eager_resize():
img = cv2.imread("../data/dataset/apple.jpg")
logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
img = C.Resize(size=(32, 32))(img)
logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
assert img.shape == (32, 32, 3)
def test_eager_rescale():
img = cv2.imread("../data/dataset/apple.jpg")
logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
pixel = img[0][0][0]
rescale_factor = 0.5
img = C.Rescale(rescale=rescale_factor, shift=0)(img)
logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
pixel_rescaled = img[0][0][0]
assert pixel*rescale_factor == pixel_rescaled
def test_eager_normalize():
img = Image.open("../data/dataset/apple.jpg").convert("RGB")
logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.size))
pixel = img.getpixel((0, 0))[0]
mean_vec = [100, 100, 100]
std_vec = [2, 2, 2]
img = C.Normalize(mean=mean_vec, std=std_vec)(img)
logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
pixel_normalized = img[0][0][0]
assert (pixel - mean_vec[0]) / std_vec[0] == pixel_normalized
def test_eager_HWC2CHW():
img = cv2.imread("../data/dataset/apple.jpg")
logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
channel = img.shape
img = C.HWC2CHW()(img)
logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
channel_swaped = img.shape
assert channel == (channel_swaped[1], channel_swaped[2], channel_swaped[0])
def test_eager_pad():
img = Image.open("../data/dataset/apple.jpg").convert("RGB")
logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.size))
img = C.Resize(size=(32, 32))(img)
logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.size))
size = img.shape
pad = 4
img = C.Pad(padding=pad)(img)
logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.size))
size_padded = img.shape
assert size_padded == (size[0] + 2 * pad, size[1] + 2 * pad, size[2])
def test_eager_exceptions():
try:
img = "../data/dataset/apple.jpg"
img = C.Decode()(img)
assert False
except TypeError as e:
assert "Input should be an encoded image in 1-D NumPy format" in str(e)
try:
img = np.array(["a", "b", "c"])
img = C.Decode()(img)
assert False
except TypeError as e:
assert "Input should be an encoded image in 1-D NumPy format" in str(e)
try:
img = cv2.imread("../data/dataset/apple.jpg")
img = C.Resize(size=(-32, 32))(img)
assert False
except ValueError as e:
assert "not within the required interval" in str(e)
try:
img = "../data/dataset/apple.jpg"
img = C.Pad(padding=4)(img)
assert False
except TypeError as e:
assert "Input should be NumPy or PIL image" in str(e)
if __name__ == '__main__':
test_eager_decode()
test_eager_resize()
test_eager_rescale()
test_eager_normalize()
test_eager_HWC2CHW()
test_eager_pad()
test_eager_exceptions()