You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/dataset/test_graphdata_distributed.py

135 lines
5.6 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import os
import random
import time
from multiprocessing import Process
import numpy as np
import mindspore.dataset as ds
from mindspore import log as logger
from mindspore.dataset.engine import SamplingStrategy
DATASET_FILE = "../data/mindrecord/testGraphData/testdata"
def graphdata_startserver(server_port):
"""
start graphdata server
"""
logger.info('test start server.\n')
ds.GraphData(DATASET_FILE, 1, 'server', port=server_port)
class RandomBatchedSampler(ds.Sampler):
# RandomBatchedSampler generate random sequence without replacement in a batched manner
def __init__(self, index_range, num_edges_per_sample):
super().__init__()
self.index_range = index_range
self.num_edges_per_sample = num_edges_per_sample
def __iter__(self):
indices = [i+1 for i in range(self.index_range)]
# Reset random seed here if necessary
# random.seed(0)
random.shuffle(indices)
for i in range(0, self.index_range, self.num_edges_per_sample):
# Drop reminder
if i + self.num_edges_per_sample <= self.index_range:
yield indices[i: i + self.num_edges_per_sample]
class GNNGraphDataset():
def __init__(self, g, batch_num):
self.g = g
self.batch_num = batch_num
def __len__(self):
# Total sample size of GNN dataset
# In this case, the size should be total_num_edges/num_edges_per_sample
return self.g.graph_info()['edge_num'][0] // self.batch_num
def __getitem__(self, index):
# index will be a list of indices yielded from RandomBatchedSampler
# Fetch edges/nodes/samples/features based on indices
nodes = self.g.get_nodes_from_edges(index.astype(np.int32))
nodes = nodes[:, 0]
neg_nodes = self.g.get_neg_sampled_neighbors(
node_list=nodes, neg_neighbor_num=3, neg_neighbor_type=1)
nodes_neighbors = self.g.get_sampled_neighbors(node_list=nodes, neighbor_nums=[
2, 2], neighbor_types=[2, 1], strategy=SamplingStrategy.RANDOM)
neg_nodes_neighbors = self.g.get_sampled_neighbors(node_list=neg_nodes[:, 1:].reshape(-1), neighbor_nums=[2, 2],
neighbor_types=[2, 1], strategy=SamplingStrategy.EDGE_WEIGHT)
nodes_neighbors_features = self.g.get_node_feature(
node_list=nodes_neighbors, feature_types=[2, 3])
neg_neighbors_features = self.g.get_node_feature(
node_list=neg_nodes_neighbors, feature_types=[2, 3])
return nodes_neighbors, neg_nodes_neighbors, nodes_neighbors_features[0], neg_neighbors_features[1]
def test_graphdata_distributed():
"""
Test distributed
"""
ASAN = os.environ.get('ASAN_OPTIONS')
if ASAN:
logger.info("skip the graphdata distributed when asan mode")
return
logger.info('test distributed.\n')
server_port = random.randint(10000, 60000)
p1 = Process(target=graphdata_startserver, args=(server_port,))
p1.start()
time.sleep(5)
g = ds.GraphData(DATASET_FILE, 1, 'client', port=server_port)
nodes = g.get_all_nodes(1)
assert nodes.tolist() == [101, 102, 103, 104, 105, 106, 107, 108, 109, 110]
row_tensor = g.get_node_feature(nodes.tolist(), [1, 2, 3])
assert row_tensor[0].tolist() == [[0, 1, 0, 0, 0], [1, 0, 0, 0, 1], [0, 0, 1, 1, 0], [0, 0, 0, 0, 0],
[1, 1, 0, 1, 0], [0, 0, 0, 0, 1], [0, 1, 0, 0, 0], [0, 0, 0, 1, 1],
[0, 1, 1, 0, 0], [0, 1, 0, 1, 0]]
assert row_tensor[2].tolist() == [1, 2, 3, 1, 4, 3, 5, 3, 5, 4]
edges = g.get_all_edges(0)
assert edges.tolist() == [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]
features = g.get_edge_feature(edges, [1, 2])
assert features[0].tolist() == [0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0,
0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0]
batch_num = 2
edge_num = g.graph_info()['edge_num'][0]
out_column_names = ["neighbors", "neg_neighbors", "neighbors_features", "neg_neighbors_features"]
dataset = ds.GeneratorDataset(source=GNNGraphDataset(g, batch_num), column_names=out_column_names,
sampler=RandomBatchedSampler(edge_num, batch_num), num_parallel_workers=4,
python_multiprocessing=False)
dataset = dataset.repeat(2)
itr = dataset.create_dict_iterator(num_epochs=1, output_numpy=True)
i = 0
for data in itr:
assert data['neighbors'].shape == (2, 7)
assert data['neg_neighbors'].shape == (6, 7)
assert data['neighbors_features'].shape == (2, 7)
assert data['neg_neighbors_features'].shape == (6, 7)
i += 1
assert i == 40
if __name__ == '__main__':
test_graphdata_distributed()