You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
202 lines
7.7 KiB
202 lines
7.7 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""
|
|
Testing Normalize op in DE
|
|
"""
|
|
import numpy as np
|
|
import mindspore.dataset as ds
|
|
import mindspore.dataset.transforms.py_transforms
|
|
import mindspore.dataset.vision.c_transforms as c_vision
|
|
import mindspore.dataset.vision.py_transforms as py_vision
|
|
from mindspore import log as logger
|
|
from util import diff_mse, visualize_image
|
|
|
|
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
|
|
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
|
|
|
|
GENERATE_GOLDEN = False
|
|
|
|
|
|
def normalizepad_np(image, mean, std):
|
|
"""
|
|
Apply the normalize+pad
|
|
"""
|
|
# DE decodes the image in RGB by default, hence
|
|
# the values here are in RGB
|
|
image = np.array(image, np.float32)
|
|
image = image - np.array(mean)
|
|
image = image * (1.0 / np.array(std))
|
|
zeros = np.zeros([image.shape[0], image.shape[1], 1], dtype=np.float32)
|
|
output = np.concatenate((image, zeros), axis=2)
|
|
return output
|
|
|
|
|
|
def test_normalizepad_op_c(plot=False):
|
|
"""
|
|
Test NormalizePad in cpp transformations
|
|
"""
|
|
logger.info("Test Normalize in cpp")
|
|
mean = [121.0, 115.0, 100.0]
|
|
std = [70.0, 68.0, 71.0]
|
|
# define map operations
|
|
decode_op = c_vision.Decode()
|
|
normalizepad_op = c_vision.NormalizePad(mean, std)
|
|
|
|
# First dataset
|
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
data1 = data1.map(operations=decode_op, input_columns=["image"])
|
|
data1 = data1.map(operations=normalizepad_op, input_columns=["image"])
|
|
|
|
# Second dataset
|
|
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
data2 = data2.map(operations=decode_op, input_columns=["image"])
|
|
|
|
num_iter = 0
|
|
for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True),
|
|
data2.create_dict_iterator(num_epochs=1, output_numpy=True)):
|
|
image_de_normalized = item1["image"]
|
|
image_original = item2["image"]
|
|
image_np_normalized = normalizepad_np(image_original, mean, std)
|
|
mse = diff_mse(image_de_normalized, image_np_normalized)
|
|
logger.info("image_{}, mse: {}".format(num_iter + 1, mse))
|
|
assert mse < 0.01
|
|
if plot:
|
|
visualize_image(image_original, image_de_normalized, mse, image_np_normalized)
|
|
num_iter += 1
|
|
|
|
|
|
def test_normalizepad_op_py(plot=False):
|
|
"""
|
|
Test NormalizePad in python transformations
|
|
"""
|
|
logger.info("Test Normalize in python")
|
|
mean = [0.475, 0.45, 0.392]
|
|
std = [0.275, 0.267, 0.278]
|
|
# define map operations
|
|
transforms = [
|
|
py_vision.Decode(),
|
|
py_vision.ToTensor()
|
|
]
|
|
transform = mindspore.dataset.transforms.py_transforms.Compose(transforms)
|
|
normalizepad_op = py_vision.NormalizePad(mean, std)
|
|
|
|
# First dataset
|
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
data1 = data1.map(operations=transform, input_columns=["image"])
|
|
data1 = data1.map(operations=normalizepad_op, input_columns=["image"])
|
|
|
|
# Second dataset
|
|
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
data2 = data2.map(operations=transform, input_columns=["image"])
|
|
|
|
num_iter = 0
|
|
for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True),
|
|
data2.create_dict_iterator(num_epochs=1, output_numpy=True)):
|
|
image_de_normalized = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
|
|
image_np_normalized = (normalizepad_np(item2["image"].transpose(1, 2, 0), mean, std) * 255).astype(np.uint8)
|
|
image_original = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
|
|
mse = diff_mse(image_de_normalized, image_np_normalized)
|
|
logger.info("image_{}, mse: {}".format(num_iter + 1, mse))
|
|
assert mse < 0.01
|
|
if plot:
|
|
visualize_image(image_original, image_de_normalized, mse, image_np_normalized)
|
|
num_iter += 1
|
|
|
|
|
|
def test_decode_normalizepad_op():
|
|
"""
|
|
Test Decode op followed by NormalizePad op
|
|
"""
|
|
logger.info("Test [Decode, Normalize] in one Map")
|
|
|
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image", "label"], num_parallel_workers=1,
|
|
shuffle=False)
|
|
|
|
# define map operations
|
|
decode_op = c_vision.Decode()
|
|
normalizepad_op = c_vision.NormalizePad([121.0, 115.0, 100.0], [70.0, 68.0, 71.0], "float16")
|
|
|
|
# apply map operations on images
|
|
data1 = data1.map(operations=[decode_op, normalizepad_op], input_columns=["image"])
|
|
|
|
num_iter = 0
|
|
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
logger.info("Looping inside iterator {}".format(num_iter))
|
|
assert item["image"].dtype == np.float16
|
|
num_iter += 1
|
|
|
|
|
|
def test_normalizepad_exception_unequal_size_c():
|
|
"""
|
|
Test NormalizePad in c transformation: len(mean) != len(std)
|
|
expected to raise ValueError
|
|
"""
|
|
logger.info("test_normalize_exception_unequal_size_c")
|
|
try:
|
|
_ = c_vision.NormalizePad([100, 250, 125], [50, 50, 75, 75])
|
|
except ValueError as e:
|
|
logger.info("Got an exception in DE: {}".format(str(e)))
|
|
assert str(e) == "Length of mean and std must be equal."
|
|
|
|
try:
|
|
_ = c_vision.NormalizePad([100, 250, 125], [50, 50, 75], 1)
|
|
except TypeError as e:
|
|
logger.info("Got an exception in DE: {}".format(str(e)))
|
|
assert str(e) == "dtype should be string."
|
|
|
|
try:
|
|
_ = c_vision.NormalizePad([100, 250, 125], [50, 50, 75], "")
|
|
except ValueError as e:
|
|
logger.info("Got an exception in DE: {}".format(str(e)))
|
|
assert str(e) == "dtype only support float32 or float16."
|
|
|
|
|
|
def test_normalizepad_exception_unequal_size_py():
|
|
"""
|
|
Test NormalizePad in python transformation: len(mean) != len(std)
|
|
expected to raise ValueError
|
|
"""
|
|
logger.info("test_normalizepad_exception_unequal_size_py")
|
|
try:
|
|
_ = py_vision.NormalizePad([0.50, 0.30, 0.75], [0.18, 0.32, 0.71, 0.72])
|
|
except ValueError as e:
|
|
logger.info("Got an exception in DE: {}".format(str(e)))
|
|
assert str(e) == "Length of mean and std must be equal."
|
|
|
|
try:
|
|
_ = py_vision.NormalizePad([0.50, 0.30, 0.75], [0.18, 0.32, 0.71], 1)
|
|
except TypeError as e:
|
|
logger.info("Got an exception in DE: {}".format(str(e)))
|
|
assert str(e) == "dtype should be string."
|
|
|
|
try:
|
|
_ = py_vision.NormalizePad([0.50, 0.30, 0.75], [0.18, 0.32, 0.71], "")
|
|
except ValueError as e:
|
|
logger.info("Got an exception in DE: {}".format(str(e)))
|
|
assert str(e) == "dtype only support float32 or float16."
|
|
|
|
|
|
def test_normalizepad_exception_invalid_range_py():
|
|
"""
|
|
Test NormalizePad in python transformation: value is not in range [0,1]
|
|
expected to raise ValueError
|
|
"""
|
|
logger.info("test_normalizepad_exception_invalid_range_py")
|
|
try:
|
|
_ = py_vision.NormalizePad([0.75, 1.25, 0.5], [0.1, 0.18, 1.32])
|
|
except ValueError as e:
|
|
logger.info("Got an exception in DE: {}".format(str(e)))
|
|
assert "Input mean_value is not within the required interval of [0.0, 1.0]." in str(e)
|