You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/dataset/test_tensor_empty.py

73 lines
2.9 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import numpy as np
import mindspore.dataset as ds
def test_tensor_empty():
def gen():
for _ in range(4):
(yield np.array([], dtype=np.int64), np.array([], dtype='S').reshape([0, 4]), np.array([1],
dtype=np.float64))
data = ds.GeneratorDataset(gen, column_names=["col1", "col2", "col3"])
for d in data.create_tuple_iterator(output_numpy=True):
np.testing.assert_array_equal(np.array([], dtype=np.int64), d[0])
np.testing.assert_array_equal(np.array([], dtype='S').reshape([0, 4]), d[1])
np.testing.assert_array_equal(np.array([1], dtype=np.float64), d[2])
def test_tensor_empty_map():
def gen():
for _ in range(4):
(yield np.array([], dtype=np.int64), np.array([], dtype='S'), np.array([1], dtype=np.float64))
data = ds.GeneratorDataset(gen, column_names=["col1", "col2", "col3"])
def func(x, y, z):
x = np.array([1], dtype=np.int64)
y = np.array(["Hi"], dtype='S')
z = np.array([], dtype=np.float64)
return x, y, z
data = data.map(operations=func, input_columns=["col1", "col2", "col3"])
for d in data.create_tuple_iterator(output_numpy=True):
np.testing.assert_array_equal(np.array([1], dtype=np.int64), d[0])
np.testing.assert_array_equal(np.array(["Hi"], dtype='S'), d[1])
np.testing.assert_array_equal(np.array([], dtype=np.float64), d[2])
def test_tensor_empty_batch():
def gen():
for _ in range(4):
(yield np.array([], dtype=np.int64), np.array([], dtype='S').reshape([0, 4]), np.array([1],
dtype=np.float64))
data = ds.GeneratorDataset(gen, column_names=["col1", "col2", "col3"]).batch(2)
for d in data.create_tuple_iterator(output_numpy=True):
np.testing.assert_array_equal(np.array([], dtype=np.int64).reshape([2, 0]), d[0])
np.testing.assert_array_equal(np.array([], dtype='S').reshape([2, 0, 4]), d[1])
np.testing.assert_array_equal(np.array([[1], [1]], dtype=np.float64), d[2])
if __name__ == '__main__':
test_tensor_empty()
test_tensor_empty_map()
test_tensor_empty_batch()