You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/ir/test_row_tensor.py

477 lines
18 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
@File : test_row_tensor.py
@Author:
@Date : 2020-06-08
@Desc : test mindspore row_tensor's operation
"""
import numpy as np
import pytest
import mindspore as ms
import mindspore.nn as nn
from mindspore.ops import composite as C
from mindspore.ops import functional as F
from mindspore.ops import operations as P
from mindspore.ops.composite.multitype_ops.zeros_like_impl import zeros_like
from mindspore.ops.primitive import constexpr, PrimitiveWithInfer, prim_attr_register
from mindspore.ops._grad.grad_base import bprop_getters
from mindspore import Tensor, RowTensor, context
from mindspore.common.parameter import Parameter, ParameterTuple
from mindspore.common import dtype as mstype
from mindspore._checkparam import Validator as validator
from mindspore._checkparam import Rel
from mindspore.nn import Optimizer
from mindspore.nn import TrainOneStepCell, WithLossCell
from mindspore.nn.optim import Momentum
from mindspore.train import Model
from ....dataset_mock import MindData
@pytest.fixture(scope="module", autouse=True)
def setup_teardown():
context.set_context(mode=context.GRAPH_MODE, enable_sparse=True)
yield
context.set_context(enable_sparse=False)
reduce_sum = P.ReduceSum()
unsorted_segment_sum = P.UnsortedSegmentSum()
transpose = P.Transpose()
shape_op = P.Shape()
reshape = P.Reshape()
size_op = P.Size()
invert_permutation = P.InvertPermutation()
logical_and = P.LogicalAnd()
def get_axis(x):
shape = shape_op(x)
length = F.tuple_len(shape)
perm = F.make_range(0, length)
return perm
class MSELoss(nn.Cell):
def __init__(self):
super(MSELoss, self).__init__()
self.reduce_sum = P.ReduceSum()
self.square = P.Square()
self.reduce_mean = P.ReduceMean()
def construct(self, data, label):
diff = data - label
return self.reduce_mean(self.square(diff), get_axis(diff))
class MindDataSet(MindData):
def __init__(self, dataset_types, dataset_shapes):
super(MindDataSet, self).__init__(size=2, batch_size=32,
np_types=dataset_types,
output_shapes=dataset_shapes,
input_indexs=(0, 1))
def __next__(self):
if self._size < self._iter_num:
raise StopIteration
self._iter_num += 1
lst = []
for shape_, type_ in zip(self._output_shapes, self._np_types):
lst.append(Tensor(np.ones(shape_).astype(type_)))
return tuple(lst)
@constexpr
def _generate_shape_index(out_shape, indices_shape, axis):
out_rank = len(out_shape)
ind_rank = len(indices_shape)
if axis < 0:
axis += out_rank - ind_rank + 1
perm_part1 = tuple(range(axis, axis + ind_rank))
index = tuple(range(out_rank))
perm = perm_part1 + index[:axis] + index[axis + ind_rank:]
return perm
@constexpr
def _generate_inverse_index(x_shape, axis):
x_rank = len(x_shape)
index = tuple(range(x_rank))
if axis < 0:
axis += x_rank
perm = index[1:1 + axis] + (0,) + index[1 + axis:]
return perm
# pylint: disable=W0231
class MySparseGatherV2(PrimitiveWithInfer):
"""
For test
"""
@prim_attr_register
def __init__(self):
"""init index_select"""
self.init_prim_io_names(inputs=['params', 'indices', 'axis'], outputs=['output'])
def __infer__(self, params, indices, axis):
validator.check_subclass("params", params['dtype'], mstype.tensor, self.name)
validator.check_tensor_dtype_valid("indices", indices['dtype'], mstype.int_type, self.name)
validator.check_subclass("axis", axis['dtype'], mstype.int_, self.name)
axis_v = axis['value']
params_shp = params['shape']
rank = len(params_shp)
validator.check_int_range(axis_v, -rank, rank, Rel.INC_LEFT, "axis", self.name)
if axis_v < 0:
axis_v += rank
out_shape = params_shp[:axis_v] + indices['shape'] + params_shp[axis_v + 1:]
out = {'shape': out_shape,
'dtype': params['dtype'],
'value': None}
return out
@bprop_getters.register(MySparseGatherV2)
def get_bprop_sparse_gather_v2(self):
"""Generate bprop for MySparseGatherV2"""
def bprop(x, indices, axis, out, dout):
x_shp = shape_op(x)
if axis == 0:
indices_size = (size_op(indices),)
x_tail_shp = x_shp[1:]
values_shape = indices_size + x_tail_shp
values = reshape(dout, values_shape)
indices = reshape(indices, indices_size)
return RowTensor(indices, values, x_shp), zeros_like(indices), zeros_like(axis)
if F.rank(dout) == 0:
dout = P.ExpandDims()(dout, -1)
if F.rank(indices) == 0:
indices = P.ExpandDims()(indices, -1)
out_shp = shape_op(dout)
ind_shp = shape_op(indices)
# Example: out_shape:(3,2,3) axis 1 -> (1,0,2)
perm_1 = _generate_shape_index(out_shp, ind_shp, axis)
values_transpose = transpose(dout, perm_1)
params_grad = unsorted_segment_sum(values_transpose, indices, shape_op(x)[axis])
# Example: out_shape:(3,2,3) axis 2 -> (1,2,0)
perm_2 = _generate_inverse_index(x_shp, axis)
params_grad = transpose(params_grad, perm_2)
return params_grad, zeros_like(indices), zeros_like(axis)
return bprop
adam_opt_for_map = C.MultitypeFuncGraph("adam_opt_for_map")
@adam_opt_for_map.register("Tensor", "Tensor", "Tensor", "Tensor", "Tensor",
"Tensor", "Tensor", "Tensor", "RowTensor", "Bool")
def _update_run_op_for_map_row_tensor(beta1, beta2, eps, lr, weight_decay_tensor, param,
m, v, gradient, decay_flag):
return gradient.values
@adam_opt_for_map.register("Tensor", "Tensor", "Tensor", "Tensor", "Tensor",
"Tensor", "Tensor", "Tensor", "Tensor", "Bool")
def _update_run_op_for_map_tensor(beta1, beta2, eps, lr, weight_decay_tensor, param,
m, v, gradient, decay_flag):
op_mul = P.Mul()
op_square = P.Square()
op_sqrt = P.Sqrt()
op_cast = P.Cast()
op_reshape = P.Reshape()
op_shape = P.Shape()
param_fp32 = op_cast(param, mstype.float32)
m_fp32 = op_cast(m, mstype.float32)
v_fp32 = op_cast(v, mstype.float32)
gradient_fp32 = op_cast(gradient, mstype.float32)
next_m = op_mul(beta1, m_fp32) + op_mul(op_cast(F.tuple_to_array((1.0,)), mstype.float32) - beta1, gradient_fp32)
next_v = op_mul(beta2, v_fp32) + op_mul(op_cast(F.tuple_to_array((1.0,)), mstype.float32)
- beta2, op_square(gradient_fp32))
update = next_m / (op_sqrt(next_v) + eps)
if decay_flag:
update = update + op_mul(weight_decay_tensor, param_fp32)
update_with_lr = op_mul(lr, update)
next_param = param_fp32 - op_reshape(update_with_lr, op_shape(param_fp32))
next_v = F.depend(next_v, F.assign(param, next_param))
next_v = F.depend(next_v, F.assign(m, next_m))
next_v = F.depend(next_v, F.assign(v, next_v))
return next_v
def _check_param_value(beta1, beta2, eps, weight_decay, prim_name):
"""Check the type of inputs."""
validator.check_value_type("beta1", beta1, [float], prim_name)
validator.check_value_type("beta2", beta2, [float], prim_name)
validator.check_value_type("eps", eps, [float], prim_name)
validator.check_value_type("weight_dacay", weight_decay, [float], prim_name)
validator.check_float_range(beta1, 0.0, 1.0, Rel.INC_NEITHER, "beta1", prim_name)
validator.check_float_range(beta2, 0.0, 1.0, Rel.INC_NEITHER, "beta2", prim_name)
validator.check_positive_float(eps, "eps", prim_name)
validator.check_non_negative_float(weight_decay, "weight_decay", prim_name)
class AdamWeightDecaySparse(Optimizer):
def __init__(self, params, learning_rate=1e-3, beta1=0.9, beta2=0.999, eps=1e-6, weight_decay=0.0,
decay_filter=lambda x: 'beta' not in x.name and 'gamma' not in x.name):
super(AdamWeightDecaySparse, self).__init__(learning_rate, params)
if self.is_group:
raise RuntimeError(f"The {self.cls_name} optimizer cannot support group setting.")
_check_param_value(beta1, beta2, eps, weight_decay, self.cls_name)
self.beta1 = Tensor(np.array([beta1]).astype(np.float32))
self.beta2 = Tensor(np.array([beta2]).astype(np.float32))
self.eps = Tensor(np.array([eps]).astype(np.float32))
self.weight_decay_tensor = Tensor(np.array([weight_decay]).astype(np.float32))
self.params = self.parameters
self.moments1 = self.params.clone(prefix="adam_m", init='zeros')
self.moments2 = self.params.clone(prefix="adam_v", init='zeros')
self.decay_flag = tuple(decay_filter(x) for x in self.params)
self.map = C.Map()
def construct(self, gradients):
lr = self.get_lr()
updated_velocity = self.map(F.partial(adam_opt_for_map, self.beta1, self.beta2, self.eps, lr,
self.weight_decay_tensor),
self.params, self.moments1, self.moments2, gradients, self.decay_flag)
return updated_velocity
def test_row_tensor_make_row_tensor():
class MakeRowTensor(nn.Cell):
def __init__(self):
super(MakeRowTensor, self).__init__()
self.dense_shape = (3, 2)
def construct(self, indices, values):
ret = (RowTensor(indices, values, self.dense_shape),)
return ret[0]
indices = Tensor([1, 2])
values = Tensor([[0, 0], [1, 2]], dtype=ms.float32)
MakeRowTensor()(indices, values)
class RowTensorGetAttr(nn.Cell):
def __init__(self, dense_shape):
super(RowTensorGetAttr, self).__init__()
self.dense_shape = dense_shape
def construct(self, indices, values):
x = RowTensor(indices, values, self.dense_shape)
return x.values, x.indices, x.dense_shape
def test_row_tensor_attr():
indices = Tensor([0])
values = Tensor([[1, 2]], dtype=ms.float32)
RowTensorGetAttr((3, 2))(indices, values)
def test_row_tensor_sparse_gatherv2_grad_all():
grad_all = C.GradOperation(get_all=True)
class GradWrap(nn.Cell):
def __init__(self, network):
super(GradWrap, self).__init__()
self.network = network
def construct(self, x, y):
grad = grad_all(self.network)(x, y)
return grad[0].indices, grad[0].values, grad[0].dense_shape
class SparseGatherV2(nn.Cell):
def __init__(self):
super(SparseGatherV2, self).__init__()
self.sparse_gatherv2 = MySparseGatherV2()
self.axis = 0
def construct(self, params, indices):
return self.sparse_gatherv2(params, indices, self.axis)
params = Tensor(np.ones([3, 1, 2]).astype(np.int32))
indices = Tensor(np.array([0, 1]).astype(np.int32))
GradWrap(SparseGatherV2())(params, indices)
def test_row_tensor_sparse_gatherv2_grad_with_pram():
grad_by_list = C.GradOperation(get_by_list=True)
class GradWrap(nn.Cell):
def __init__(self, network):
super(GradWrap, self).__init__()
self.network = network
self.weights = ParameterTuple(filter(lambda x: x.requires_grad, network.get_parameters()))
def construct(self, x):
weights = self.weights
grad = grad_by_list(self.network, weights)(x)
x = grad[0]
return x.values, x.indices, x.dense_shape
class SparseGatherV2(nn.Cell):
def __init__(self):
super(SparseGatherV2, self).__init__()
self.sparse_gatherv2 = MySparseGatherV2()
self.axis = 0
self.params = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.int32)), name="params")
def construct(self, indices):
return self.sparse_gatherv2(self.params, indices, self.axis)
indices = Tensor(np.array([0, 1]).astype(np.int32))
network = GradWrap(SparseGatherV2())
network(indices)
def test_row_tensor_env_get():
class Loss(nn.Cell):
def __init__(self):
super(Loss, self).__init__()
def construct(self, base, target):
return base
class NetWithSparseGatherV2(nn.Cell):
def __init__(self):
super(NetWithSparseGatherV2, self).__init__()
self.w1 = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="w1")
self.w2 = Parameter(Tensor(np.ones([2, 1, 2]).astype(np.float32)), name="w2")
self.gatherv2 = MySparseGatherV2()
self.axis = 0
def construct(self, indices):
return self.gatherv2(self.w1, indices, self.axis) * self.w2
inputs = Tensor(np.array([0, 1]).astype(np.int32))
label = Tensor(np.zeros([2, 1, 2]).astype(np.float32))
net = NetWithSparseGatherV2()
net.set_train()
loss = Loss()
optimizer = AdamWeightDecaySparse(net.trainable_params())
net_with_loss = WithLossCell(net, loss)
train_network = TrainOneStepCell(net_with_loss, optimizer)
train_network(inputs, label)
def test_row_tensor_model_train():
class Net(nn.Cell):
def __init__(self, in_features, out_features):
super(Net, self).__init__()
self.weight = Parameter(Tensor(np.ones([out_features, in_features]).astype(np.float32)), name="weight")
self.add = P.Add()
self.cast = P.Cast()
self.flag = True
def construct(self, inputs, label):
x = self.add(inputs, self.weight)
if self.flag:
x = self.cast(x, mstype.float32)
return x
dataset_types = (np.float32, np.float32)
dataset_shapes = ((16, 16), (16, 16))
dataset = MindDataSet(dataset_types, dataset_shapes)
net = Net(16, 16)
net.set_train()
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
model = Model(net, optimizer=optimizer)
model.train(2, dataset, dataset_sink_mode=False)
def test_row_tensor_values_dim_greater_than_dense_shape_dim():
indices = Tensor(np.array([0, 1], dtype=np.int32))
values = Tensor(np.random.randn(2, 4, 5).astype(np.float32))
dense_shape = (3, 4)
with pytest.raises(TypeError):
RowTensorGetAttr(dense_shape)(indices, values)
def test_row_tensor_values_dim_less_than_dense_shape_dim():
indices = Tensor(np.array([0, 1], dtype=np.int32))
values = Tensor(np.random.randn(2, 4).astype(np.float32))
dense_shape = (3, 4, 5)
with pytest.raises(TypeError):
RowTensorGetAttr(dense_shape)(indices, values)
def test_row_tensor_value_and_dense_shape_illegal():
indices = Tensor(np.array([0, 1], dtype=np.int32))
values = Tensor(np.random.randn(2, 4).astype(np.float32))
dense_shape = (3, 5)
with pytest.raises(TypeError):
RowTensorGetAttr(dense_shape)(indices, values)
class RowTensorValuesDouble(nn.Cell):
def __init__(self):
super().__init__()
def construct(self, x):
indices = x.indices
values = x.values * 2
dense_shape = x.dense_shape
return RowTensor(indices, values, dense_shape)
class RowTensorValuesAdd2(nn.Cell):
def __init__(self):
super().__init__()
def construct(self, x):
indices = x.indices
values = x.values + 2
dense_shape = x.dense_shape
return RowTensor(indices, values, dense_shape)
class RowTensorWithControlIf(nn.Cell):
def __init__(self, dense_shape):
super().__init__()
self.op1 = RowTensorValuesDouble()
self.op2 = RowTensorValuesAdd2()
self.dense_shape = dense_shape
def construct(self, a, b, indices, values):
x = RowTensor(indices, values, self.dense_shape)
if a > b:
x = self.op1(x)
else:
x = self.op2(x)
return x.indices, x.values
def test_row_tensor_with_control_flow_if():
a = Tensor(np.array(0).astype(np.int32))
b = Tensor(np.array(2).astype(np.int32))
indices = Tensor(np.array([0, 2]).astype(np.int32))
values = Tensor(np.ones([2, 2]).astype(np.float32))
dense_shape = (5, 2)
net = RowTensorWithControlIf(dense_shape)
net(a, b, indices, values)
class EmbeddingLookUpBnNet(nn.Cell):
def __init__(self, vocab_size, embedding_size, target='CPU'):
super().__init__()
self.embedding_lookup = nn.EmbeddingLookup(vocab_size, embedding_size, param_init='ones', target=target)
self.bn = nn.BatchNorm2d(num_features=3)
self.mul = P.Mul()
self.reshape = P.Reshape()
self.relu = nn.PReLU()
def construct(self, indices):
x = self.embedding_lookup(indices)
x = self.reshape(x, (2, 3, 2, 2))
x = self.relu(x)
x = self.bn(x)
return x
def test_embedding_lookup_with_mix_precision():
data = Tensor(np.array([0, 1, 2]).astype(np.int32))
label = Tensor(np.random.randn(*(2, 3, 2, 2)).astype(np.float32))
net = EmbeddingLookUpBnNet(8, 8, target='CPU')
criterion = nn.SoftmaxCrossEntropyWithLogits(reduction='mean')
optimizer = nn.Adam(params=net.trainable_params(), learning_rate=0.1)
optimizer.target = 'CPU'
train_network = ms.amp.build_train_network(net, optimizer, criterion, level="O2")
train_network.set_train()
for _ in range(2):
train_network(data, label)