You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/python/nn/optim/test_lazyadam.py

109 lines
3.8 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test lazy adam """
import numpy as np
import pytest
import mindspore.nn as nn
from mindspore import Tensor, Parameter, context
from mindspore.common.api import _executor
from mindspore.nn import TrainOneStepCell, WithLossCell
from mindspore.nn.optim import LazyAdam
from mindspore.ops import operations as P
@pytest.fixture(scope="module", autouse=True)
def setup_teardown():
context.set_context(enable_sparse=True)
yield
context.set_context(enable_sparse=False)
class Net(nn.Cell):
""" Net definition """
def __init__(self):
super(Net, self).__init__()
self.weight = Parameter(Tensor(np.ones([64, 10]).astype(np.float32)), name="weight")
self.bias = Parameter(Tensor(np.ones([10]).astype((np.float32))), name="bias")
self.matmul = P.MatMul()
self.biasAdd = P.BiasAdd()
def construct(self, x):
x = self.biasAdd(self.matmul(x, self.weight), self.bias)
return x
class NetWithSparseGatherV2(nn.Cell):
""" NetWithSparseGatherV2 definition """
def __init__(self):
super(NetWithSparseGatherV2, self).__init__()
self.weight1 = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="weight1")
self.weight2 = Parameter(Tensor(np.ones([2, 1, 2]).astype((np.float32))), name="weight2")
self.axis = 0
self.gather = P.SparseGatherV2()
def construct(self, indices, label):
return self.gather(self.weight1, indices, self.axis) + self.weight2
def test_lazy_adam_compile():
""" test lazy adam compile """
inputs = Tensor(np.ones([1, 64]).astype(np.float32))
label = Tensor(np.zeros([1, 10]).astype(np.float32))
net = Net()
net.set_train()
loss = nn.SoftmaxCrossEntropyWithLogits()
optimizer = LazyAdam(net.trainable_params(), learning_rate=0.1, weight_decay=0.9, loss_scale=2.0)
net_with_loss = WithLossCell(net, loss)
train_network = TrainOneStepCell(net_with_loss, optimizer)
_executor.compile(train_network, inputs, label)
def test_spares_lazy_adam_compile():
""" test sparse adam compile """
indices = Tensor(np.array([0, 1]).astype(np.int32))
label = Tensor(np.zeros([2, 1, 2]).astype(np.float32))
net = NetWithSparseGatherV2()
net.set_train()
optimizer = LazyAdam(net.trainable_params(), learning_rate=0.1, weight_decay=0.9, loss_scale=2.0)
optimizer.target = 'CPU'
train_network = TrainOneStepCell(net, optimizer)
_executor.compile(train_network, indices, label)
def test_spares_lazy_adam():
""" test sparse adam"""
indices = Tensor(np.array([0, 1]).astype(np.int32))
label = Tensor(np.zeros([2, 1, 2]).astype(np.float32))
net = NetWithSparseGatherV2()
net.set_train()
optimizer = LazyAdam(net.trainable_params(), learning_rate=0.1, weight_decay=0.9, loss_scale=2.0)
optimizer.target = 'Ascend'
train_network = TrainOneStepCell(net, optimizer)
_executor.compile(train_network, indices, label)
def test_lazy_adam_error():
net = Net()
with pytest.raises(ValueError):
LazyAdam(net.get_parameters(), learning_rate=-0.1)
with pytest.raises(TypeError):
LazyAdam(net.get_parameters(), learning_rate=0.1, beta1=2)