You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
104 lines
3.1 KiB
104 lines
3.1 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
""" test optimizer """
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from mindspore import Tensor
|
|
from mindspore.common.parameter import Parameter
|
|
from mindspore.nn.optim import Optimizer, SGD, Adam, AdamWeightDecay
|
|
|
|
|
|
class IterableObjc:
|
|
def __iter__(self):
|
|
cont = 0
|
|
while cont < 3:
|
|
cont += 1
|
|
yield Parameter(Tensor(cont), name="cont")
|
|
|
|
|
|
params = IterableObjc()
|
|
|
|
|
|
class TestOptimizer():
|
|
def test_init(self):
|
|
Optimizer(0.5, params)
|
|
with pytest.raises(ValueError):
|
|
Optimizer(-0.5, params)
|
|
|
|
def test_construct(self):
|
|
opt_2 = Optimizer(0.5, params)
|
|
with pytest.raises(NotImplementedError):
|
|
opt_2.construct()
|
|
|
|
|
|
class TestAdam():
|
|
""" TestAdam definition """
|
|
|
|
def test_init(self):
|
|
Adam(params, learning_rate=1e-3, beta1=0.9, beta2=0.999, eps=1e-8, use_locking=False,
|
|
use_nesterov=False, weight_decay=0.0, loss_scale=1.0)
|
|
|
|
def test_construct(self):
|
|
with pytest.raises(RuntimeError):
|
|
gradient = Tensor(np.zeros([1, 2, 3]))
|
|
adam = Adam(params, learning_rate=1e-3, beta1=0.9, beta2=0.999, eps=1e-8, use_locking=False,
|
|
use_nesterov=False, weight_decay=0.0, loss_scale=1.0)
|
|
adam(gradient)
|
|
|
|
|
|
class TestSGD():
|
|
""" TestSGD definition """
|
|
|
|
def test_init(self):
|
|
with pytest.raises(ValueError):
|
|
SGD(params, learning_rate=0.1, momentum=-0.1, dampening=0, weight_decay=0, nesterov=False)
|
|
with pytest.raises(ValueError):
|
|
SGD(params, learning_rate=0.12, momentum=-0.1, dampening=0, weight_decay=0, nesterov=False)
|
|
SGD(params)
|
|
|
|
|
|
class TestNullParam():
|
|
""" TestNullParam definition """
|
|
|
|
def test_optim_init(self):
|
|
with pytest.raises(ValueError):
|
|
Optimizer(0.1, None)
|
|
|
|
def test_AdamWightDecay_init(self):
|
|
with pytest.raises(ValueError):
|
|
AdamWeightDecay(None)
|
|
|
|
def test_Sgd_init(self):
|
|
with pytest.raises(ValueError):
|
|
SGD(None)
|
|
|
|
|
|
class TestUnsupportParam():
|
|
""" TestUnsupportParam definition """
|
|
|
|
def test_optim_init(self):
|
|
with pytest.raises(TypeError):
|
|
Optimizer(0.1, (1, 2, 3))
|
|
|
|
def test_AdamWightDecay_init(self):
|
|
with pytest.raises(TypeError):
|
|
AdamWeightDecay(9)
|
|
|
|
def test_Sgd_init(self):
|
|
with pytest.raises(TypeError):
|
|
paramsTensor = Parameter(Tensor(np.zeros([1, 2, 3])), "x")
|
|
SGD(paramsTensor)
|