You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
110 lines
3.2 KiB
110 lines
3.2 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
""" Test Interpolate """
|
|
import pytest
|
|
|
|
import mindspore.nn as nn
|
|
import mindspore.common.dtype as mstype
|
|
from mindspore import Tensor
|
|
from mindspore import context
|
|
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
|
|
|
|
def test_resizebilinear():
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super(Net, self).__init__()
|
|
self.value = Tensor([[[[1, 2, 3, 4], [5, 6, 7, 8]]]], mstype.float32)
|
|
|
|
def construct(self):
|
|
interpolate = nn.ResizeBilinear()
|
|
return interpolate(self.value, size=(5, 5))
|
|
|
|
net = Net()
|
|
net()
|
|
|
|
|
|
def test_resizebilinear_1():
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super(Net, self).__init__()
|
|
self.value = Tensor([[[[1, 2, 3, 4], [5, 6, 7, 8]]]], mstype.float32)
|
|
|
|
def construct(self):
|
|
interpolate = nn.ResizeBilinear()
|
|
return interpolate(self.value, scale_factor=2)
|
|
|
|
net = Net()
|
|
net()
|
|
|
|
|
|
def test_resizebilinear_parameter():
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super(Net, self).__init__()
|
|
|
|
def construct(self, x):
|
|
interpolate = nn.ResizeBilinear()
|
|
return interpolate(x, size=(5, 5))
|
|
|
|
net = Net()
|
|
net(Tensor([[[[1, 2, 3, 4], [5, 6, 7, 8]]]], mstype.float32))
|
|
|
|
|
|
def test_resizebilinear_parameter_1():
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super(Net, self).__init__()
|
|
|
|
def construct(self, x):
|
|
interpolate = nn.ResizeBilinear()
|
|
return interpolate(x, scale_factor=2)
|
|
|
|
net = Net()
|
|
net(Tensor([[[[1, 2, 3, 4], [5, 6, 7, 8]]]], mstype.float32))
|
|
|
|
|
|
def test_resizebilinear_error():
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super(Net, self).__init__()
|
|
self.value = Tensor([[[[1, 2, 3, 4], [5, 6, 7, 8]]]], mstype.float32)
|
|
|
|
def construct(self):
|
|
interpolate = nn.ResizeBilinear()
|
|
return interpolate(self.value)
|
|
|
|
net = Net()
|
|
with pytest.raises(ValueError) as ex:
|
|
net()
|
|
assert "size and scale both none" in str(ex.value)
|
|
|
|
|
|
def test_resizebilinear_error_1():
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super(Net, self).__init__()
|
|
self.value = Tensor([[[[1, 2, 3, 4], [5, 6, 7, 8]]]], mstype.float32)
|
|
|
|
def construct(self):
|
|
interpolate = nn.ResizeBilinear()
|
|
return interpolate(self.value, size=(5, 5), scale_factor=2)
|
|
|
|
net = Net()
|
|
with pytest.raises(ValueError) as ex:
|
|
net()
|
|
assert "size and scale both not none" in str(ex.value)
|