You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
222 lines
7.3 KiB
222 lines
7.3 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""ut for model serialize(save/load)"""
|
|
import os
|
|
import stat
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore.nn as nn
|
|
from mindspore import context
|
|
from mindspore.common.parameter import Parameter
|
|
from mindspore.common.tensor import Tensor
|
|
from mindspore.ops import operations as P
|
|
from mindspore.train.serialization import export
|
|
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
|
|
|
|
def is_enable_onnxruntime():
|
|
val = os.getenv("ENABLE_ONNXRUNTIME", "False")
|
|
if val in ('ON', 'on', 'TRUE', 'True', 'true'):
|
|
return True
|
|
return False
|
|
|
|
|
|
run_on_onnxruntime = pytest.mark.skipif(not is_enable_onnxruntime(), reason="Only support running on onnxruntime")
|
|
|
|
|
|
def teardown_module():
|
|
cur_dir = os.path.dirname(os.path.realpath(__file__))
|
|
for filename in os.listdir(cur_dir):
|
|
if filename.find('ms_output_') == 0 and filename.find('.pb') > 0:
|
|
# delete temp files generated by run ut
|
|
os.chmod(filename, stat.S_IWRITE)
|
|
os.remove(filename)
|
|
|
|
|
|
class BatchNormTester(nn.Cell):
|
|
"""used to test exporting network in training mode in onnx format"""
|
|
|
|
def __init__(self, num_features):
|
|
super(BatchNormTester, self).__init__()
|
|
self.bn = nn.BatchNorm2d(num_features)
|
|
|
|
def construct(self, x):
|
|
return self.bn(x)
|
|
|
|
|
|
def test_batchnorm_train_onnx_export():
|
|
"""test onnx export interface does not modify trainable flag of a network"""
|
|
input_ = Tensor(np.ones([1, 3, 32, 32]).astype(np.float32) * 0.01)
|
|
net = BatchNormTester(3)
|
|
net.set_train()
|
|
if not net.training:
|
|
raise ValueError('netowrk is not in training mode')
|
|
onnx_file = 'batch_norm'
|
|
export(net, input_, file_name=onnx_file, file_format='ONNX')
|
|
|
|
if not net.training:
|
|
raise ValueError('netowrk is not in training mode')
|
|
|
|
file_name = "batch_norm.onnx"
|
|
assert os.path.exists(file_name)
|
|
os.chmod(file_name, stat.S_IWRITE)
|
|
os.remove(file_name)
|
|
|
|
|
|
class LeNet5(nn.Cell):
|
|
"""LeNet5 definition"""
|
|
|
|
def __init__(self):
|
|
super(LeNet5, self).__init__()
|
|
self.conv1 = nn.Conv2d(1, 6, 5, pad_mode='valid')
|
|
self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
|
|
self.fc1 = nn.Dense(16 * 5 * 5, 120)
|
|
self.fc2 = nn.Dense(120, 84)
|
|
self.fc3 = nn.Dense(84, 10)
|
|
self.relu = nn.ReLU()
|
|
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
|
|
self.flatten = P.Flatten()
|
|
|
|
def construct(self, x):
|
|
x = self.max_pool2d(self.relu(self.conv1(x)))
|
|
x = self.max_pool2d(self.relu(self.conv2(x)))
|
|
x = self.flatten(x)
|
|
x = self.relu(self.fc1(x))
|
|
x = self.relu(self.fc2(x))
|
|
x = self.fc3(x)
|
|
return x
|
|
|
|
|
|
class DefinedNet(nn.Cell):
|
|
"""simple Net definition with maxpoolwithargmax."""
|
|
|
|
def __init__(self, num_classes=10):
|
|
super(DefinedNet, self).__init__()
|
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=0, weight_init="zeros")
|
|
self.bn1 = nn.BatchNorm2d(64)
|
|
self.relu = nn.ReLU()
|
|
self.maxpool = P.MaxPoolWithArgmax(pad_mode="same", kernel_size=2, strides=2)
|
|
self.flatten = nn.Flatten()
|
|
self.fc = nn.Dense(int(56 * 56 * 64), num_classes)
|
|
|
|
def construct(self, x):
|
|
x = self.conv1(x)
|
|
x = self.bn1(x)
|
|
x = self.relu(x)
|
|
x, argmax = self.maxpool(x)
|
|
x = self.flatten(x)
|
|
x = self.fc(x)
|
|
return x
|
|
|
|
|
|
class DepthwiseConv2dAndReLU6(nn.Cell):
|
|
"""Net for testing DepthwiseConv2d and ReLU6"""
|
|
def __init__(self, input_channel, kernel_size):
|
|
super(DepthwiseConv2dAndReLU6, self).__init__()
|
|
weight_shape = [1, input_channel, kernel_size, kernel_size]
|
|
from mindspore.common.initializer import initializer
|
|
self.weight = Parameter(initializer('ones', weight_shape), name='weight')
|
|
self.depthwise_conv = P.DepthwiseConv2dNative(channel_multiplier=1, kernel_size=(kernel_size, kernel_size))
|
|
self.relu6 = nn.ReLU6()
|
|
|
|
def construct(self, x):
|
|
x = self.depthwise_conv(x, self.weight)
|
|
x = self.relu6(x)
|
|
return x
|
|
|
|
|
|
class DeepFMOpNet(nn.Cell):
|
|
"""Net definition with Gatherv2 and Tile and Square."""
|
|
def __init__(self):
|
|
super(DeepFMOpNet, self).__init__()
|
|
self.gather = P.Gather()
|
|
self.square = P.Square()
|
|
self.tile = P.Tile()
|
|
|
|
def construct(self, x, y):
|
|
x = self.tile(x, (1000, 1))
|
|
x = self.square(x)
|
|
x = self.gather(x, y, 0)
|
|
return x
|
|
|
|
|
|
def gen_tensor(shape, dtype=np.float32):
|
|
return Tensor(np.ones(shape).astype(dtype))
|
|
|
|
|
|
net_cfgs = [
|
|
('lenet', LeNet5(), gen_tensor([1, 1, 32, 32])),
|
|
('maxpoolwithargmax', DefinedNet(), gen_tensor([1, 3, 224, 224])),
|
|
('depthwiseconv_relu6', DepthwiseConv2dAndReLU6(3, kernel_size=3), gen_tensor([1, 3, 32, 32])),
|
|
('deepfm_ops', DeepFMOpNet(), (gen_tensor([1, 1]), gen_tensor([1000, 1], dtype=np.int32)))
|
|
]
|
|
|
|
|
|
def get_id(cfg):
|
|
_ = cfg
|
|
return list(map(lambda x: x[0], net_cfgs))
|
|
|
|
|
|
# use `pytest test_onnx.py::test_onnx_export[name]` or `pytest test_onnx.py::test_onnx_export -k name` to run single ut
|
|
@pytest.mark.parametrize('name, net, inp', net_cfgs, ids=get_id(net_cfgs))
|
|
def test_onnx_export(name, net, inp):
|
|
if isinstance(inp, (tuple, list)):
|
|
export(net, *inp, file_name=name, file_format='ONNX')
|
|
else:
|
|
export(net, inp, file_name=name, file_format='ONNX')
|
|
|
|
file_file = name + ".onnx"
|
|
assert os.path.exists(file_file)
|
|
os.chmod(file_file, stat.S_IWRITE)
|
|
os.remove(file_file)
|
|
|
|
|
|
@run_on_onnxruntime
|
|
@pytest.mark.parametrize('name, net, inp', net_cfgs, ids=get_id(net_cfgs))
|
|
def test_onnx_export_load_run(name, net, inp):
|
|
export(net, inp, file_name=name, file_format='ONNX')
|
|
|
|
import onnx
|
|
import onnxruntime as ort
|
|
|
|
print('--------------------- onnx load ---------------------')
|
|
# Load the ONNX model
|
|
model = onnx.load(onnx_file)
|
|
# Check that the IR is well formed
|
|
onnx.checker.check_model(model)
|
|
# Print a human readable representation of the graph
|
|
g = onnx.helper.printable_graph(model.graph)
|
|
print(g)
|
|
|
|
print('------------------ onnxruntime run ------------------')
|
|
ort_session = ort.InferenceSession(onnx_file)
|
|
input_map = {'x': inp.asnumpy()}
|
|
# provide only input x to run model
|
|
outputs = ort_session.run(None, input_map)
|
|
print(outputs[0])
|
|
# overwrite default weight to run model
|
|
for item in net.trainable_params():
|
|
default_value = item.data.asnumpy()
|
|
input_map[item.name] = np.ones(default_value.shape, dtype=default_value.dtype)
|
|
outputs = ort_session.run(None, input_map)
|
|
print(outputs[0])
|
|
|
|
file_name = name + ".onnx"
|
|
assert os.path.exists(file_name)
|
|
os.chmod(file_name, stat.S_IWRITE)
|
|
os.remove(file_name)
|