You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/probability/distribution/test_cauchy_pynative.py

73 lines
2.5 KiB

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""test cases for cauchy distribution"""
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
import mindspore.nn.probability.distribution as msd
from mindspore import Tensor
from mindspore import dtype as ms
import pytest
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
class CauchyMean(nn.Cell):
def __init__(self, loc, scale, seed=10, dtype=ms.float32, name='Cauchy'):
super().__init__()
self.b = msd.Cauchy(loc, scale, seed, dtype, name)
def construct(self):
out4 = self.b.entropy()
return out4
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.env_onecard
def test_probability_cauchy_mean_loc_scale_rand_2_ndarray():
loc = np.random.randn(1024, 512, 7, 7).astype(np.float32)
scale = np.random.uniform(0.0001, 100, size=(1024, 512, 7, 7)).astype(np.float32)
net = CauchyMean(loc, scale)
net()
class CauchyProb(nn.Cell):
def __init__(self, loc, scale, seed=10, dtype=ms.float32, name='Cauchy'):
super().__init__()
self.b = msd.Cauchy(loc, scale, seed, dtype, name)
def construct(self, value):
out1 = self.b.prob(value)
out2 = self.b.log_prob(value)
out3 = self.b.cdf(value)
out4 = self.b.log_cdf(value)
out5 = self.b.survival_function(value)
out6 = self.b.log_survival(value)
return out1, out2, out3, out4, out5, out6
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.env_onecard
def test_probability_cauchy_prob_cdf_loc_scale_rand_4_ndarray():
loc = np.random.randn(1024, 512, 7, 7).astype(np.float32)
scale = np.random.uniform(0.0001, 100, size=(1024, 512, 7, 7)).astype(np.float32)
value = np.random.randn(1024, 512, 7, 7).astype(np.float32)
net = CauchyProb(loc, scale)
net(Tensor(value))