You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/yolov3_darknet53/scripts/run_distribute_train.sh

82 lines
2.2 KiB

#!/bin/bash
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
if [ $# != 3 ]
then
echo "Usage: sh run_distribute_train.sh [DATASET_PATH] [PRETRAINED_BACKBONE] [MINDSPORE_HCCL_CONFIG_PATH]"
exit 1
fi
get_real_path(){
if [ "${1:0:1}" == "/" ]; then
echo "$1"
else
echo "$(realpath -m $PWD/$1)"
fi
}
DATASET_PATH=$(get_real_path $1)
PRETRAINED_BACKBONE=$(get_real_path $2)
MINDSPORE_HCCL_CONFIG_PATH=$(get_real_path $3)
echo $DATASET_PATH
echo $PRETRAINED_BACKBONE
echo $MINDSPORE_HCCL_CONFIG_PATH
if [ ! -d $DATASET_PATH ]
then
echo "error: DATASET_PATH=$DATASET_PATH is not a directory"
exit 1
fi
if [ ! -f $PRETRAINED_BACKBONE ]
then
echo "error: PRETRAINED_PATH=$PRETRAINED_BACKBONE is not a file"
exit 1
fi
if [ ! -f $MINDSPORE_HCCL_CONFIG_PATH ]
then
echo "error: MINDSPORE_HCCL_CONFIG_PATH=$MINDSPORE_HCCL_CONFIG_PATH is not a file"
exit 1
fi
export DEVICE_NUM=8
export RANK_SIZE=8
export MINDSPORE_HCCL_CONFIG_PATH=$MINDSPORE_HCCL_CONFIG_PATH
for((i=0; i<${DEVICE_NUM}; i++))
do
export DEVICE_ID=$i
export RANK_ID=$i
rm -rf ./train_parallel$i
mkdir ./train_parallel$i
cp ../*.py ./train_parallel$i
cp -r ../src ./train_parallel$i
cd ./train_parallel$i || exit
echo "start training for rank $RANK_ID, device $DEVICE_ID"
env > env.log
python train.py \
--data_dir=$DATASET_PATH \
--pretrained_backbone=$PRETRAINED_BACKBONE \
--is_distributed=1 \
--lr=0.1 \
--T_max=320 \
--max_epoch=320 \
--warmup_epochs=4 \
--lr_scheduler=cosine_annealing > log.txt 2>&1 &
cd ..
done