You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/cpp/pipeline/static_analysis/prim_test.cc

1141 lines
44 KiB

/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <iostream>
#include <memory>
#include "pybind11/pybind11.h"
#include "common/common_test.h"
#include "common/py_func_graph_fetcher.h"
#include "ir/manager.h"
#include "pipeline/jit/static_analysis/prim.h"
#include "pipeline/static_analysis/helper.h"
#include "frontend/operator/ops.h"
#include "debug/draw.h"
#include "ir/tensor.h"
#include "utils/symbolic.h"
namespace mindspore {
namespace abstract {
namespace py = pybind11;
namespace python_adapter = mindspore::parse::python_adapter;
class UTPrimUtils {
public:
using AbstractTensorPtr = std::shared_ptr<AbstractTensor>;
using AbstractTuplePtr = std::shared_ptr<AbstractTuple>;
static const std::shared_ptr<Float> kF32;
static const std::shared_ptr<Float> kF64;
static const std::shared_ptr<Int> kI16;
static const std::shared_ptr<Int> kI64;
static const std::shared_ptr<UInt> kU64;
static std::shared_ptr<AbstractType> TypeToAbstract(TypePtr t) { return std::make_shared<AbstractType>(t); }
static AbstractTensorPtr ArrayFloat64Of(std::initializer_list<int> shp) {
auto ele = std::make_shared<AbstractScalar>(kAnyValue, kFloat64);
return std::make_shared<AbstractTensor>(ele, std::make_shared<Shape>(shp));
}
static AbstractTensorPtr ArrayFloat32Of(std::initializer_list<int> shp) {
auto ele = std::make_shared<AbstractScalar>(kAnyValue, kFloat32);
return std::make_shared<AbstractTensor>(ele, std::make_shared<Shape>(shp));
}
static AbstractTensorPtr ArrayInt32Of(std::initializer_list<int> shp) {
auto ele = std::make_shared<AbstractScalar>(kAnyValue, kInt32);
return std::make_shared<AbstractTensor>(ele, std::make_shared<Shape>(shp));
}
static AbstractTuplePtr ShapeOf(std::initializer_list<int> vals) {
AbstractBasePtrList te;
for (auto v : vals) {
te.push_back(std::make_shared<AbstractScalar>(v));
}
return std::make_shared<AbstractTuple>(te);
}
static AbstractListPtr ListShapeOf(std::initializer_list<int> vals) {
AbstractBasePtrList te;
for (auto v : vals) {
te.push_back(std::make_shared<AbstractScalar>(v));
}
return std::make_shared<AbstractList>(te);
}
};
const std::shared_ptr<Float> UTPrimUtils::kF64 = std::make_shared<Float>(64);
const std::shared_ptr<Float> UTPrimUtils::kF32 = std::make_shared<Float>(32);
const std::shared_ptr<Int> UTPrimUtils::kI16 = std::make_shared<Int>(16);
const std::shared_ptr<Int> UTPrimUtils::kI64 = std::make_shared<Int>(64);
const std::shared_ptr<UInt> UTPrimUtils::kU64 = std::make_shared<UInt>(64);
namespace {
/* skip ut test cases temporarily
AbstractBasePtr ArrayOfTensor(const TypePtr &t, std::initializer_list<int> shp) {
auto shape = std::vector<int>(shp);
auto tensor = std::make_shared<tensor::Tensor>(t->type_id(), shape);
return ToAbstract(tensor);
}
*/
} // namespace
class TestPrim : public UT::Common {
public:
TestPrim() : getPyFun("gtest_input.pipeline.infer", true) {}
void SetUp();
void TearDown();
AnalysisEnginePtr engine_;
UT::PyFuncGraphFetcher getPyFun;
};
void TestPrim::SetUp() { engine_ = SetupAnalysisEngine(); }
void TestPrim::TearDown() {
// destroy resource
}
static FuncGraphPtr MakeFuncGraph(const PrimitivePtr prim, unsigned int nparam) {
// build the func_graph manually, eg:
// MakeFuncGraph(std::make_shared<Primitive>("scalar_add"), 2) means:
/* python source code:
* @mindspore
* def f(x, y):
* return x + y
*/
FuncGraphPtr func_graph = std::make_shared<FuncGraph>();
std::vector<AnfNodePtr> inputs;
inputs.push_back(NewValueNode(prim));
for (unsigned int i = 0; i < nparam; i++) {
inputs.push_back(func_graph->add_parameter());
}
CNodePtr cnode_prim = func_graph->NewCNode(inputs);
inputs.clear();
inputs.push_back(NewValueNode(prim::kPrimReturn));
inputs.push_back(cnode_prim);
CNodePtr cnode_return = func_graph->NewCNode(inputs);
func_graph->set_return(cnode_return);
return func_graph;
}
TEST_F(TestPrim, test_typeof) {
AbstractBasePtrList args_spec_list;
int v1 = 1;
AbstractBasePtr abstract_v1 = FromValue(v1, false);
args_spec_list.push_back(abstract_v1);
auto prim_typeof = std::make_shared<Primitive>("typeof");
FuncGraphPtr func_graph = MakeFuncGraph(prim_typeof, 1);
AbstractBasePtr res = engine_->Run(func_graph, args_spec_list).inferred->abstract();
res->dump();
TypePtr res_value = res->GetValueTrack()->cast<TypePtr>();
res_value->dump();
ASSERT_TRUE(*res_value == Int(32));
}
TEST_F(TestPrim, test_list_map) {
AbstractBasePtrList args_spec_list;
AbstractBasePtr abstract_v1 = FromValue(1, false);
AbstractBasePtr abstract_u1 = FromValue(1, false);
auto abstract_list1 = std::make_shared<AbstractList>(AbstractBasePtrList({abstract_v1, abstract_u1}));
AbstractBasePtr abstract_v2 = FromValue(2, false);
AbstractBasePtr abstract_u2 = FromValue(2, false);
auto abstract_list2 = std::make_shared<AbstractList>(AbstractBasePtrList({abstract_v2, abstract_u2}));
auto prim_scalar_add = std::make_shared<Primitive>("scalar_add");
AbstractBasePtr abstract_func = ToAbstract(prim_scalar_add);
args_spec_list.push_back(abstract_func);
args_spec_list.push_back(abstract_list1);
args_spec_list.push_back(abstract_list2);
auto prim_list_map = std::make_shared<Primitive>("list_map");
FuncGraphPtr func_graph = MakeFuncGraph(prim_list_map, 3);
AbstractBasePtr res = engine_->Run(func_graph, args_spec_list).inferred->abstract();
auto expected = std::make_shared<AbstractList>(AbstractBasePtrList({FromValue(3, false), FromValue(3, false)}));
res->dump();
MS_LOG(INFO) << "result res: " << res->ToString();
MS_LOG(INFO) << "result expected: " << expected->ToString();
ASSERT_TRUE(*res == *expected);
}
TEST_F(TestPrim, test_list_reduce) {
AbstractBasePtrList args_spec_list;
int v1 = 1;
AbstractBasePtr abstract_v1 = FromValue(v1, false);
AbstractBasePtr abstract_v2 = FromValue(v1, false);
auto abstract_list = std::make_shared<AbstractList>(AbstractBasePtrList({abstract_v1, abstract_v2}));
auto prim_scalar_add = std::make_shared<Primitive>("scalar_add");
AbstractBasePtr abstract_func = ToAbstract(prim_scalar_add);
args_spec_list.push_back(abstract_func);
args_spec_list.push_back(abstract_list);
args_spec_list.push_back(abstract_v1);
auto prim_list_reduce = std::make_shared<Primitive>("list_reduce");
FuncGraphPtr func_graph = MakeFuncGraph(prim_list_reduce, 3);
AbstractBasePtr res = engine_->Run(func_graph, args_spec_list).inferred->abstract();
res->dump();
TypePtr res_type = res->GetTypeTrack();
res_type->dump();
ASSERT_TRUE(*res_type == Int(32));
}
TEST_F(TestPrim, test_scalar_to_array) {
AbstractBasePtrList args_spec_list;
int v1 = 1;
AbstractBasePtr abstract_v1 = FromValue(v1, false);
args_spec_list.push_back(abstract_v1);
auto prim_scalar_to_array = std::make_shared<Primitive>("scalar_to_array");
FuncGraphPtr func_graph = MakeFuncGraph(prim_scalar_to_array, 1);
AbstractBasePtr res = engine_->Run(func_graph, args_spec_list).inferred->abstract();
res->dump();
TypePtr res_type = res->BuildType();
res_type->dump();
ASSERT_TRUE(*res_type == TensorType(std::make_shared<Int>(32)));
}
TEST_F(TestPrim, test_array_to_scalar) {
AbstractBasePtrList args_spec_list;
int v1 = 1;
AbstractBasePtr abstract_v1 = FromValue(v1, false);
auto abstract_a1 = std::make_shared<AbstractTensor>(abstract_v1, std::make_shared<Shape>());
args_spec_list.push_back(abstract_a1);
auto prim_array_to_scalar = std::make_shared<Primitive>("array_to_scalar");
FuncGraphPtr func_graph = MakeFuncGraph(prim_array_to_scalar, 1);
AbstractBasePtr res = engine_->Run(func_graph, args_spec_list).inferred->abstract();
res->dump();
TypePtr res_type = res->BuildType();
res_type->dump();
ASSERT_TRUE(*res_type == Int(32));
}
TEST_F(TestPrim, test_J_1) {
AbstractBasePtrList args_spec_list;
int v1 = 1;
AbstractBasePtr abstract_v1 = FromValue(v1, false);
args_spec_list.push_back(abstract_v1);
auto prim_J = std::make_shared<Primitive>("J");
FuncGraphPtr func_graph = MakeFuncGraph(prim_J, 1);
AbstractBasePtr res = engine_->Run(func_graph, args_spec_list).inferred->abstract();
AbstractJTaggedPtr res_J = dyn_cast<AbstractJTagged>(res);
ASSERT_TRUE(res_J != nullptr);
ASSERT_TRUE(*(res_J->element()) == *abstract_v1);
}
TEST_F(TestPrim, test_J_2) {
// def add(x):
// return x + x
// def f(x):
// return J(add)(x)
std::vector<AnfNodePtr> inputs;
FuncGraphPtr func_graph1 = std::make_shared<FuncGraph>();
inputs.push_back(NewValueNode(prim::kPrimScalarAdd));
auto x = func_graph1->add_parameter();
inputs.push_back(x);
inputs.push_back(x);
CNodePtr cnode1 = func_graph1->NewCNode(inputs);
func_graph1->set_return(cnode1);
FuncGraphPtr func_graph = std::make_shared<FuncGraph>();
inputs.clear();
auto x1 = func_graph->add_parameter();
inputs.clear();
inputs.push_back(NewValueNode(prim::kPrimJ));
inputs.push_back(NewValueNode(func_graph1));
CNodePtr jf = func_graph->NewCNode(inputs);
inputs.clear();
inputs.push_back(jf);
inputs.push_back(x1);
CNodePtr jf_jx = func_graph->NewCNode(inputs);
inputs.clear();
inputs.push_back(NewValueNode(prim::kPrimReturn));
inputs.push_back(jf_jx);
CNodePtr cnode_return = func_graph->NewCNode(inputs);
func_graph->set_return(cnode_return);
draw::Draw("test_J_2.dot", func_graph);
int v1 = 1;
AbstractBasePtr abstract_v1 = FromValue(v1, false);
AbstractBasePtrList args_spec_list = {abstract_v1};
AbstractBasePtr res = engine_->Run(func_graph, args_spec_list).inferred->abstract();
res->dump();
AbstractTuplePtr res_J = dyn_cast<AbstractTuple>(res);
ASSERT_TRUE(res_J != nullptr);
auto res_J_0 = res_J->elements()[0];
ASSERT_TRUE(res_J_0 != nullptr);
ASSERT_TRUE(*res_J_0 == *(FromValue(2, false)));
AbstractFunctionPtr res_J_1 = dyn_cast<AbstractFunction>(res_J->elements()[1]);
ASSERT_TRUE(res_J_1 != nullptr);
}
TEST_F(TestPrim, test_dot) {
auto dot = std::make_shared<Primitive>("dot");
FuncGraphPtr func_graph = MakeFuncGraph(dot, 2);
auto a1 = UTPrimUtils::ArrayFloat64Of({2, 3});
auto a2 = UTPrimUtils::ArrayFloat64Of({3, 4});
std::vector<int> expectedA = {2, 4};
auto expected = UTPrimUtils::ArrayFloat64Of({2, 4});
AbstractBasePtrList args_spec_list = {a1, a2};
AbstractTensorPtr res = dyn_cast<AbstractTensor>(engine_->Run(func_graph, args_spec_list).inferred->abstract());
ASSERT_TRUE(*(dyn_cast<Shape>(res->GetShapeTrack())) == *(dyn_cast<Shape>(expected->GetShapeTrack())));
}
// tail half
TEST_F(TestPrim, test_switch1) {
PrimitivePtr switch_ = std::make_shared<Primitive>("switch");
FuncGraphPtr func_graph = MakeFuncGraph(switch_, 3);
AbstractBasePtr arg0 = FromValue(true, false);
AbstractBasePtr arg1 = FromValue(1, false);
AbstractBasePtr arg2 = FromValue(2, false);
AbstractBasePtrList args_spec_list = {arg0, arg1, arg2};
AbstractBasePtr res = engine_->Run(func_graph, args_spec_list).inferred->abstract();
ASSERT_TRUE(*res == *arg1);
}
TEST_F(TestPrim, test_switch2) {
PrimitivePtr switch_ = std::make_shared<Primitive>("switch");
FuncGraphPtr func_graph = MakeFuncGraph(switch_, 3);
AbstractBasePtr arg0 = FromValue(false, false);
AbstractBasePtr arg1 = FromValue(1, false);
AbstractBasePtr arg2 = FromValue(2, false);
AbstractBasePtrList args_spec_list = {arg0, arg1, arg2};
AbstractBasePtr res = engine_->Run(func_graph, args_spec_list).inferred->abstract();
MS_LOG(INFO) << "make result res: " << res->ToString();
MS_LOG(INFO) << "make result arg2: " << arg2->ToString();
ASSERT_TRUE(*res == *arg2);
}
TEST_F(TestPrim, test_identity) {
PrimitivePtr identity = std::make_shared<Primitive>("identity");
FuncGraphPtr func_graph = MakeFuncGraph(identity, 1);
AbstractBasePtr abstract_v1 = FromValue(1, false);
AbstractBasePtrList args_spec_list = {abstract_v1};
AbstractBasePtr res = engine_->Run(func_graph, args_spec_list).inferred->abstract();
ASSERT_TRUE(*res == *abstract_v1);
}
TEST_F(TestPrim, test_broadcast_shape) {
PrimitivePtr broadcast_shape = std::make_shared<Primitive>("broadcast_shape");
FuncGraphPtr func_graph = MakeFuncGraph(broadcast_shape, 2);
auto a = UTPrimUtils::ShapeOf({Shape::SHP_ANY, Shape::SHP_ANY});
auto b = UTPrimUtils::ShapeOf({Shape::SHP_ANY});
std::vector<Any> expected{Shape::SHP_ANY, Shape::SHP_ANY};
AbstractBasePtrList args_spec_list = {a, b};
AbstractTuplePtr res = dyn_cast<AbstractTuple>(engine_->Run(func_graph, args_spec_list).inferred->abstract());
auto ret = res->BuildValue()->cast<ValueTuplePtr>()->value();
std::vector<ValuePtr> element_list = {MakeValue(Shape::SHP_ANY), MakeValue(Shape::SHP_ANY)};
ASSERT_TRUE(ret.size() == element_list.size());
for (int i = 0; i < element_list.size(); i++) {
ASSERT_TRUE(*ret[i] == *element_list[i]);
}
}
TEST_F(TestPrim, test_partial) {
PrimitivePtr prim = prim::kPrimPartial;
FuncGraphPtr func_graph = MakeFuncGraph(prim, 3);
PrimitivePtr add = prim::kPrimScalarAdd;
AbstractBasePtr abstract_add = ToAbstract(add);
AbstractBasePtr abstract_v1 = FromValue(1, false);
AbstractBasePtr abstract_v2 = FromValue(1, false);
AbstractBasePtrList args_spec_list = {abstract_add, abstract_v1, abstract_v2};
AbstractBasePtr res = engine_->Run(func_graph, args_spec_list).inferred->abstract();
AbstractBasePtrList fn_args_list = {abstract_v1, abstract_v2};
auto expected = std::make_shared<PartialAbstractClosure>(
std::make_shared<PrimitiveAbstractClosure>(prim::kPrimScalarAdd), fn_args_list);
MS_LOG(INFO) << "result: " << res->ToString();
MS_LOG(INFO) << "expected: " << expected->ToString();
ASSERT_TRUE(res->ToString() == expected->ToString());
}
// def test_env(x, y):
// return env_setitem(newenv, embed(x), y)
TEST_F(TestPrim, test_env_setitem) {
FuncGraphPtr graph_embed = MakeFuncGraph(prim::kPrimEmbed, 1);
AbstractBasePtr abstract_x = FromValue(1, false);
AbstractBasePtrList args_spec_list = {abstract_x};
AbstractBasePtr embed_x = engine_->Run(graph_embed, args_spec_list).inferred->abstract();
FuncGraphPtr func_graph = MakeFuncGraph(prim::kPrimEnvSetItem, 3);
AbstractBasePtr abstract_env = ToAbstract(newenv);
AbstractBasePtr abstract_y = FromValue(2, false);
args_spec_list = {abstract_env, embed_x, abstract_y};
AbstractBasePtr res = engine_->Run(func_graph, args_spec_list).inferred->abstract();
AbstractBasePtr exp = std::make_shared<AbstractScalar>(kAnyValue, std::make_shared<EnvType>());
ASSERT_TRUE(*res == *exp);
}
// def test_env(x, y, z):
// e = env_setitem(newenv, embed(x), y)
// return env_getitem(e, embed(x), z)
TEST_F(TestPrim, test_env_getitem) {
FuncGraphPtr graph_embed = MakeFuncGraph(prim::kPrimEmbed, 1);
AbstractBasePtr abstract_x = FromValue(1, false);
AbstractBasePtrList args_spec_list = {abstract_x};
AbstractBasePtr embed_x = engine_->Run(graph_embed, args_spec_list).inferred->abstract();
FuncGraphPtr graph_setitem = MakeFuncGraph(prim::kPrimEnvSetItem, 3);
AbstractBasePtr abstract_env = ToAbstract(newenv);
AbstractBasePtr abstract_y = FromValue(2, false);
args_spec_list = {abstract_env, embed_x, abstract_y};
AbstractBasePtr res = engine_->Run(graph_setitem, args_spec_list).inferred->abstract();
AbstractBasePtr exp = std::make_shared<AbstractScalar>(kAnyValue, std::make_shared<EnvType>());
ASSERT_TRUE(*res == *exp);
FuncGraphPtr graph_getitem = MakeFuncGraph(prim::kPrimEnvGetItem, 3);
AbstractBasePtr abstract_z = FromValue(3, false);
args_spec_list = {res, embed_x, abstract_z};
res = engine_->Run(graph_getitem, args_spec_list).inferred->abstract();
ASSERT_TRUE(*res == *abstract_x);
}
// def test_env(x, y, z):
// e1 = env_setitem(newenv, embed(x), y)
// e2 = env_setitem(newenv, embed(x), z)
// return env_add(e1, e2)
TEST_F(TestPrim, test_env_add) {
FuncGraphPtr graph_embed = MakeFuncGraph(prim::kPrimEmbed, 1);
AbstractBasePtr abstract_x = FromValue(1, false);
AbstractBasePtrList args_spec_list = {abstract_x};
AbstractBasePtr embed_x = engine_->Run(graph_embed, args_spec_list).inferred->abstract();
FuncGraphPtr graph_setitem = MakeFuncGraph(prim::kPrimEnvSetItem, 3);
AbstractBasePtr abstract_env = ToAbstract(newenv);
AbstractBasePtr abstract_y = FromValue(2, false);
args_spec_list = {abstract_env, embed_x, abstract_y};
AbstractBasePtr abstract_e1 = engine_->Run(graph_setitem, args_spec_list).inferred->abstract();
AbstractBasePtr exp = std::make_shared<AbstractScalar>(kAnyValue, std::make_shared<EnvType>());
ASSERT_TRUE(*abstract_e1 == *exp);
AbstractBasePtr abstract_z = FromValue(3, false);
args_spec_list = {abstract_env, embed_x, abstract_z};
AbstractBasePtr abstract_e2 = engine_->Run(graph_setitem, args_spec_list).inferred->abstract();
ASSERT_TRUE(*abstract_e2 == *exp);
FuncGraphPtr graph_add = MakeFuncGraph(prim::kPrimEnvAdd, 2);
args_spec_list = {abstract_e1, abstract_e2};
AbstractBasePtr res = engine_->Run(graph_add, args_spec_list).inferred->abstract();
ASSERT_TRUE(*res == *exp);
}
TEST_F(TestPrim, test_relu) {
PrimitivePtr relu = prim::kPrimRelu;
relu->AddAttr("T", MakeValue(static_cast<int>(kNumberTypeFloat64)));
FuncGraphPtr func_graph = MakeFuncGraph(relu, 1);
AbstractBasePtr expected = UTPrimUtils::ArrayFloat64Of({2, 2, 2, 3}); // NCHW
AbstractBasePtrList args_spec_list = {expected};
AbstractBasePtr res = engine_->Run(func_graph, args_spec_list).inferred->abstract();
ASSERT_TRUE(*res == *expected);
}
/*
TEST_F(TestPrim, test_relu2) {
FuncGraphPtr func_graph = getPyFun("get_relu");
ASSERT_TRUE(func_graph != nullptr);
draw::Draw("test_relu.dot", func_graph);
auto arr = ArrayOfTensor(UTPrimUtils::kF32, {3, 4, 5});
auto expected = ArrayOfTensor(UTPrimUtils::kF32, {3, 4, 5});
AbstractBasePtrList args_spec_list = {arr};
AbstractBasePtr ret = engine_->Run(func_graph, args_spec_list).inferred->abstract();
auto res = dyn_cast<AbstractTensor>(ret);
ASSERT_TRUE(*(res->GetShapeTrack()) == *(expected->GetShapeTrack()));
}
TEST_F(TestPrim, test_conv2d1) {
std::shared_ptr<py::scoped_interpreter> env = python_adapter::set_python_scoped();
py::tuple kernel_size(2);
kernel_size[0] = 5;
kernel_size[1] = 5;
std::shared_ptr<FuncGraph> func_graph = getPyFun.CallAndParseRet("test_conv2d", 64, kernel_size, 0, 2, 1);
// NCHW
std::vector<int> inputs_dims = {2, 20, 32, 32};
std::vector<int> weight_dims = {64, 20, 5, 5};
tensor::TensorPtr inputs = std::make_shared<tensor::Tensor>();
inputs->set_data_type(kNumberTypeInt32);
inputs->set_shape(inputs_dims);
// Cout, Cin, kernel_size
tensor::TensorPtr weight = std::make_shared<tensor::Tensor>();
weight->set_data_type(kNumberTypeInt32);
weight->set_shape(weight_dims);
AbstractBasePtr abstract_inputs = FromValue(inputs, true);
AbstractBasePtr abstract_weight = FromValue(weight, true);
AbstractBasePtrList args_spec_list = {abstract_inputs, abstract_weight};
AbstractBasePtr expected = abstract_inputs->Clone();
// NCHW
std::vector<int> shape = {2, 64, 14, 14};
expected->set_shape(std::make_shared<Shape>(shape));
AbstractBasePtr res = engine_->Run(func_graph, args_spec_list).inferred->abstract();
MS_LOG(INFO) << "result: " << res->ToString();
MS_LOG(INFO) << "expected: " << expected->ToString();
auto res_ptr = dyn_cast<AbstractTensor>(res);
auto expected_ptr = dyn_cast<AbstractTensor>(expected);
ASSERT_TRUE(*res_ptr->shape() == *expected_ptr->shape());
ASSERT_TRUE(*res_ptr->element() == *expected_ptr->element());
}
TEST_F(TestPrim, test_conv2d) {
FuncGraphPtr func_graph = getPyFun("get_conv2d");
ASSERT_TRUE(func_graph != nullptr);
auto input = ArrayOfTensor(UTPrimUtils::kF32, {10, 32, 32, 32});
auto weight = ArrayOfTensor(UTPrimUtils::kF32, {64, 32, 3, 3});
AbstractBasePtrList args_spec_list = {input, weight};
AbstractBasePtr ret = engine_->Run(func_graph, args_spec_list).inferred->abstract();
auto res = dyn_cast<AbstractTensor>(ret);
auto expected = ArrayOfTensor(UTPrimUtils::kF32, {10, 64, 16, 16});
MS_LOG(INFO) << "result: " << res->ToString();
MS_LOG(INFO) << "expected: " << expected->ToString();
ASSERT_TRUE(*(res->GetShapeTrack()) == *(expected->GetShapeTrack()));
}
TEST_F(TestPrim, test_conv2d_native) {
FuncGraphPtr func_graph = getPyFun("get_conv2d_native");
ASSERT_TRUE(func_graph != nullptr);
auto input = ArrayOfTensor(UTPrimUtils::kF64, {10, 32, 32, 32});
auto weight = ArrayOfTensor(UTPrimUtils::kF64, {3, 32, 3, 3});
AbstractBasePtrList args_spec_list = {input, weight};
AbstractBasePtr ret = engine_->Run(func_graph, args_spec_list).inferred->abstract();
auto res = dyn_cast<AbstractTensor>(ret);
auto expected = ArrayOfTensor(UTPrimUtils::kF64, {10, 96, 16, 16});
MS_LOG(INFO) << "result: " << res->ToString();
MS_LOG(INFO) << "expected: " << expected->ToString();
ASSERT_TRUE(*(res->GetShapeTrack()) == *(expected->GetShapeTrack()));
}
TEST_F(TestPrim, test_biasAdd) {
FuncGraphPtr func_graph = getPyFun("get_bias_add");
ASSERT_TRUE(func_graph != nullptr);
auto value = ArrayOfTensor(UTPrimUtils::kF32, {10, 32, 32, 32});
auto bias = ArrayOfTensor(UTPrimUtils::kF32, {32});
AbstractBasePtrList args_spec_list = {value, bias};
AbstractBasePtr ret = engine_->Run(func_graph, args_spec_list).inferred->abstract();
auto res = dyn_cast<AbstractTensor>(ret);
auto expected = ArrayOfTensor(UTPrimUtils::kF32, {10, 32, 32, 32});
MS_LOG(INFO) << "result: " << res->ToString();
MS_LOG(INFO) << "expected: " << expected->ToString();
ASSERT_TRUE(*(res->GetShapeTrack()) == *(expected->GetShapeTrack()));
}
TEST_F(TestPrim, test_softmax_cross_entropy_with_logits) {
FuncGraphPtr func_graph = getPyFun("get_softmax_cross_entropy_with_logits");
ASSERT_TRUE(func_graph != nullptr);
auto logits = ArrayOfTensor(UTPrimUtils::kF32, {64, 10});
auto labels = ArrayOfTensor(UTPrimUtils::kF32, {64, 10});
AbstractBasePtrList args_spec_list = {logits, labels};
AbstractBasePtr ret = engine_->Run(func_graph, args_spec_list).inferred->abstract();
ASSERT_NE(ret, nullptr);
auto res = dyn_cast<AbstractTuple>(ret);
auto loss = ArrayOfTensor(UTPrimUtils::kF32, {64});
auto dLogits = ArrayOfTensor(UTPrimUtils::kF32, {64, 10});
AbstractBasePtrList expected_list = {loss, dLogits};
auto expected = std::make_shared<AbstractTuple>(expected_list);
MS_LOG(INFO) << "result: " << res->ToString();
MS_LOG(INFO) << "expected: " << expected->ToString();
auto res_ptr0 = dyn_cast<AbstractTuple>(res);
auto expected_ptr0 = dyn_cast<AbstractTuple>(expected);
ASSERT_GT((*res_ptr0).size(), 1);
auto res_ptr = dyn_cast<AbstractTensor>((*res_ptr0)[1]);
ASSERT_GT((*expected_ptr0).size(), 1);
auto expected_ptr = dyn_cast<AbstractTensor>((*expected_ptr0)[1]);
ASSERT_TRUE(*res_ptr->shape() == *expected_ptr->shape());
ASSERT_TRUE(*res_ptr->element() == *expected_ptr->element());
}
TEST_F(TestPrim, test_tensor_to_scalar_prim) {
FuncGraphPtr func_graph = getPyFun("get_tensor_to_scalar");
ASSERT_TRUE(func_graph != nullptr);
draw::Draw("get_tensor_to_scalar.dot", func_graph);
auto logits = ArrayOfTensor(UTPrimUtils::kF64, {64, 10});
auto labels = ArrayOfTensor(UTPrimUtils::kF64, {64, 10});
AbstractBasePtrList args_spec_list = {logits, labels};
AbstractBasePtr ret = engine_->Run(func_graph, args_spec_list).inferred->abstract();
auto res = dyn_cast<AbstractScalar>(ret);
AbstractScalarPtr expected = std::make_shared<AbstractScalar>(kAnyValue, kFloat64);
expected->set_type(UTPrimUtils::kF64);
MS_LOG(INFO) << "result: " << res->ToString();
MS_LOG(INFO) << "expected: " << expected->ToString();
ASSERT_TRUE(*res == *expected);
}
TEST_F(TestPrim, test_fused_batch_norm) {
PrimitivePtr fused_batch_norm = prim::kPrimFusedBatchNorm;
fused_batch_norm->AddAttr("epsilon", MakeValue(0.001f));
fused_batch_norm->AddAttr("momentum", MakeValue(0.1f));
FuncGraphPtr func_graph = MakeFuncGraph(fused_batch_norm, 5);
// NCHW
std::vector<int> inputs_dims = {128, 64, 32, 64};
std::vector<int> scale_dims = {64};
std::vector<int> offset_dims = {64};
std::vector<int> mean_dims = {64};
std::vector<int> variance_dims = {64};
tensor::TensorPtr inputs = std::make_shared<tensor::Tensor>();
inputs->set_data_type(kNumberTypeFloat32);
inputs->set_shape(inputs_dims);
tensor::TensorPtr scale = std::make_shared<tensor::Tensor>();
scale->set_data_type(kNumberTypeFloat32);
scale->set_shape(scale_dims);
tensor::TensorPtr offset = std::make_shared<tensor::Tensor>();
offset->set_data_type(kNumberTypeFloat32);
offset->set_shape(offset_dims);
tensor::TensorPtr mean = std::make_shared<tensor::Tensor>();
mean->set_data_type(kNumberTypeFloat32);
mean->set_shape(mean_dims);
tensor::TensorPtr variance = std::make_shared<tensor::Tensor>();
variance->set_data_type(kNumberTypeFloat32);
variance->set_shape(variance_dims);
AbstractBasePtr abstract_inputs = FromValue(inputs, true);
AbstractBasePtr abstract_scale = FromValue(scale, true);
AbstractBasePtr abstract_offset = FromValue(offset, true);
AbstractBasePtr abstract_mean = FromValue(mean, true);
AbstractBasePtr abstract_variance = FromValue(variance, true);
AbstractBasePtrList args_spec_list = {abstract_inputs, abstract_scale, abstract_offset, abstract_mean,
abstract_variance};
AbstractBasePtr expected0 = abstract_inputs->Clone();
AbstractBasePtr expected1 = abstract_scale->Clone();
AbstractBasePtr res = engine_->Run(func_graph, args_spec_list).inferred->abstract();
MS_LOG(INFO) << "result: " << res->ToString();
MS_LOG(INFO) << "expected0: " << expected0->ToString();
MS_LOG(INFO) << "expected1: " << expected1->ToString();
std::shared_ptr<AbstractTuple> abs_tuple = dyn_cast<AbstractTuple>(res);
ASSERT_TRUE(abs_tuple != nullptr);
ASSERT_TRUE(*abs_tuple->elements()[0] == *expected0);
ASSERT_TRUE(*abs_tuple->elements()[1] == *expected1);
ASSERT_TRUE(*abs_tuple->elements()[2] == *expected1);
ASSERT_TRUE(*abs_tuple->elements()[3] == *expected1);
ASSERT_TRUE(*abs_tuple->elements()[4] == *expected1);
}
TEST_F(TestPrim, test_pooling) {
PrimitivePtr pooling = prim::kPrimPooling;
pooling->AddAttr("mode", MakeValue(std::string("avg")));
pooling->AddAttr("pad_mode", MakeValue(std::string("valid")));
pooling->AddAttr("nan_opt", MakeValue(0));
pooling->AddAttr("window", MakeValue(2));
pooling->AddAttr("pad", MakeValue(1));
pooling->AddAttr("stride", MakeValue(1));
pooling->AddAttr("data_mode", MakeValue(1));
pooling->AddAttr("ceil_mode", MakeValue(0));
FuncGraphPtr func_graph = MakeFuncGraph(pooling, 1);
std::vector<int> inputs_dims = {8, 64, 3, 3};
auto inputs = std::make_shared<tensor::Tensor>();
inputs->set_data_type(kNumberTypeFloat32);
inputs->set_shape(inputs_dims);
AbstractBasePtr abstract_input = FromValue(inputs, false);
AbstractBasePtrList args_spec_list = {abstract_input};
AbstractBasePtr res = engine_->Run(func_graph, args_spec_list).inferred->abstract();
AbstractBasePtr expected = abstract_input->Clone()->Broaden();
std::vector<int> expected_dims = {8, 64, 2, 2};
expected->set_shape(std::make_shared<Shape>(expected_dims));
MS_LOG(INFO) << "result: " << res->ToString();
MS_LOG(INFO) << "expected: " << expected->ToString();
ASSERT_TRUE(*res == *expected);
}
TEST_F(TestPrim, test_hastype) {
AbstractBasePtrList args_spec_list;
int v1 = 1;
TypePtr v2 = std::make_shared<Number>();
AbstractBasePtr abstract_v1 = FromValue(v1, false);
AbstractTypePtr abstract_v2 = UTPrimUtils::TypeToAbstract(v2);
AbstractBasePtr expected = FromValue(true, false);
args_spec_list.push_back(abstract_v1);
args_spec_list.push_back(abstract_v2);
auto prim = std::make_shared<Primitive>("hastype");
FuncGraphPtr func_graph = MakeFuncGraph(prim, 2);
AbstractBasePtr res = engine_->Run(func_graph, args_spec_list).inferred->abstract();
ASSERT_TRUE(*res == *expected);
}
TEST_F(TestPrim, test_array_len) {
AbstractBasePtrList args_spec_list;
auto v1 = UTPrimUtils::ArrayFloat64Of({3, 4, 0, 2});
auto expected = std::make_shared<AbstractScalar>(kAnyValue, kInt32);
args_spec_list.push_back(v1);
auto prim = std::make_shared<Primitive>("array_len");
FuncGraphPtr func_graph = MakeFuncGraph(prim, 1);
AbstractBasePtr res = engine_->Run(func_graph, args_spec_list).inferred->abstract();
ASSERT_TRUE(*res == *expected);
}
TEST_F(TestPrim, test_list_len) {
AbstractBasePtrList args_spec_list;
auto v1 = UTPrimUtils::ListShapeOf({3, 4, 0, 2});
auto expected = std::make_shared<AbstractScalar>(4);
args_spec_list.push_back(v1);
auto prim = std::make_shared<Primitive>("list_len");
FuncGraphPtr func_graph = MakeFuncGraph(prim, 1);
AbstractBasePtr res = engine_->Run(func_graph, args_spec_list).inferred->abstract();
ASSERT_TRUE(*res == *expected);
}
TEST_F(TestPrim, test_tuple_len) {
AbstractBasePtrList args_spec_list;
auto v1 = UTPrimUtils::ShapeOf({3, 4, 0, 2});
auto expected = std::make_shared<AbstractScalar>(4);
args_spec_list.push_back(v1);
auto prim = std::make_shared<Primitive>("tuple_len");
FuncGraphPtr func_graph = MakeFuncGraph(prim, 1);
AbstractBasePtr res = engine_->Run(func_graph, args_spec_list).inferred->abstract();
ASSERT_TRUE(*res == *expected);
}
TEST_F(TestPrim, test_tuple_reversed) {
AbstractBasePtrList args_spec_list;
auto v1 = UTPrimUtils::ShapeOf({0, 1, 2, 3});
auto expected = UTPrimUtils::ShapeOf({3, 2, 1, 0});
args_spec_list.push_back(v1);
auto prim = std::make_shared<Primitive>("tuple_reversed");
FuncGraphPtr func_graph = MakeFuncGraph(prim, 1);
AbstractBasePtr res = engine_->Run(func_graph, args_spec_list).inferred->abstract();
MS_LOG(INFO) << "expect=" << expected->ToString();
ASSERT_TRUE(*res == *expected);
}
TEST_F(TestPrim, test_list_getitem) {
AbstractBasePtrList args_spec_list;
int v1 = 2;
int v2 = 1;
AbstractBasePtr elem = FromValue(v1, false);
AbstractBasePtr elem2 = FromValue(v2, false);
AbstractBasePtrList elems = {elem, elem};
auto abstract_v1 = std::make_shared<AbstractList>(elems);
AbstractBasePtr abstract_v2 = FromValue(v2, false);
args_spec_list.push_back(abstract_v1);
args_spec_list.push_back(abstract_v2);
auto prim = std::make_shared<Primitive>("list_getitem");
FuncGraphPtr func_graph = MakeFuncGraph(prim, 2);
AbstractBasePtr res = engine_->Run(func_graph, args_spec_list).inferred->abstract();
ASSERT_TRUE(*res == *elem);
}
TEST_F(TestPrim, test_list_setitem) {
int v1 = 1;
int v2 = 2;
AbstractBasePtr elem1 = FromValue(v1, false);
AbstractBasePtr elem2 = FromValue(v2, false);
AbstractBasePtrList elems = {elem1, elem1};
auto abstract_tuple = std::make_shared<AbstractList>(elems);
AbstractBasePtr abstract_v2 = FromValue(v1, false);
AbstractBasePtr abstract_v3 = FromValue(v2, false);
AbstractBasePtrList args_spec_list = {abstract_tuple, abstract_v2, abstract_v3};
auto prim = std::make_shared<Primitive>("list_setitem");
FuncGraphPtr func_graph = MakeFuncGraph(prim, 3);
AbstractBasePtr res = engine_->Run(func_graph, args_spec_list).inferred->abstract();
MS_LOG(INFO) << "result: " << res->ToString();
AbstractBasePtrList elems_exp = {elem1, elem2};
auto expected = std::make_shared<AbstractList>(elems_exp);
MS_LOG(INFO) << "expected: " << expected->ToString();
auto res_list = dyn_cast<AbstractList>(res);
ASSERT_TRUE(*expected == *res_list);
}
TEST_F(TestPrim, test_list_append) {
int v1 = 1;
AbstractBasePtr elem1 = FromValue(v1, false);
AbstractBasePtr elem2 = FromValue(v1, false);
auto abstract_tuple = std::make_shared<AbstractList>(AbstractBasePtrList({elem1, elem2}));
AbstractBasePtr abstract_v2 = FromValue(v1, false);
AbstractBasePtrList args_spec_list = {abstract_tuple, abstract_v2};
auto prim = std::make_shared<Primitive>("list_append");
FuncGraphPtr func_graph = MakeFuncGraph(prim, 2);
AbstractBasePtr res = engine_->Run(func_graph, args_spec_list).inferred->abstract();
MS_LOG(INFO) << "result: " << res->ToString();
auto expected = std::make_shared<AbstractList>(AbstractBasePtrList({elem1, elem2}));
MS_LOG(INFO) << "expected: " << expected->ToString();
auto res_list = dyn_cast<AbstractList>(res);
ASSERT_TRUE(*res_list == *expected);
}
TEST_F(TestPrim, test_tuple_setitem) {
int v1 = 1;
int v2 = 2;
AbstractBasePtr elem1 = FromValue(v1, false);
AbstractBasePtr elem2 = FromValue(v2, false);
AbstractBasePtrList elems = {elem1, elem1};
auto abstract_tuple = std::make_shared<AbstractTuple>(elems);
AbstractBasePtr abstract_v2 = FromValue(v1, false);
AbstractBasePtr abstract_v3 = FromValue(v2, false);
AbstractBasePtrList args_spec_list = {abstract_tuple, abstract_v2, abstract_v3};
auto prim = std::make_shared<Primitive>("tuple_setitem");
FuncGraphPtr func_graph = MakeFuncGraph(prim, 3);
AbstractBasePtr res = engine_->Run(func_graph, args_spec_list).inferred->abstract();
MS_LOG(INFO) << "result: " << res->ToString();
AbstractBasePtrList elems_exp = {elem1, elem2};
auto expected = std::make_shared<AbstractTuple>(elems_exp);
MS_LOG(INFO) << "expected: " << expected->ToString();
auto res_tuple = dyn_cast<AbstractTuple>(res);
ASSERT_TRUE(*res == *expected);
}
TEST_F(TestPrim, test_make_list) {
AbstractBasePtrList args_spec_list;
int v1 = 2;
int v2 = 2;
AbstractBasePtr abstract_v1 = FromValue(v1, false);
AbstractBasePtr abstract_v2 = FromValue(v2, false);
auto expected = std::make_shared<AbstractList>(AbstractBasePtrList({abstract_v1, abstract_v2}));
args_spec_list.push_back(abstract_v1);
args_spec_list.push_back(abstract_v2);
auto prim = std::make_shared<Primitive>("make_list");
FuncGraphPtr func_graph = MakeFuncGraph(prim, 2);
AbstractBasePtr res = engine_->Run(func_graph, args_spec_list).inferred->abstract();
ASSERT_TRUE(*res == *expected);
}
TEST_F(TestPrim, test_make_range) {
AbstractBasePtrList args_spec_list;
int v1 = 1;
int v2 = 4;
AbstractBasePtr abstract_v1 = FromValue(v1);
AbstractBasePtr abstract_v2 = FromValue(v2);
args_spec_list.push_back(abstract_v1);
args_spec_list.push_back(abstract_v2);
auto prim = std::make_shared<Primitive>("make_range");
std::shared_ptr<FuncGraph> func_graph = MakeFuncGraph(prim, 2);
AbstractBasePtr ele1 = FromValue(1);
AbstractBasePtr ele2 = FromValue(2);
AbstractBasePtr ele3 = FromValue(3);
AbstractBasePtrList elem_list({ele1, ele2, ele3});
AbstractBasePtr expected = std::make_shared<AbstractTuple>(elem_list);
AbstractBasePtr res = engine_->Run(func_graph, args_spec_list).inferred->abstract();
MS_LOG(INFO) << "res=" << res->ToString();
MS_LOG(INFO) << "expected=" << expected->ToString();
ASSERT_TRUE(*res == *expected);
}
TEST_F(TestPrim, test_layernorm) {
PrimitivePtr layerNorm = prim::kPrimLayerNorm;
layerNorm->AddAttr("begin_norm_axis", MakeValue(1));
layerNorm->AddAttr("begin_params_axis", MakeValue(1));
std::shared_ptr<FuncGraph> func_graph = MakeFuncGraph(layerNorm, 3);
std::vector<int> inputs_dims = {128, 64, 32, 64};
std::vector<int> mean_var_dims = {128, 64, 32, 1};
std::vector<int> params_dims = {64, 32, 64};
tensor::TensorPtr inputs = std::make_shared<tensor::Tensor>();
inputs->set_data_type(kNumberTypeFloat32);
inputs->set_shape(inputs_dims);
tensor::TensorPtr mean_var = std::make_shared<tensor::Tensor>();
mean_var->set_data_type(kNumberTypeFloat32);
mean_var->set_shape(mean_var_dims);
tensor::TensorPtr gamma = std::make_shared<tensor::Tensor>();
gamma->set_data_type(kNumberTypeFloat32);
gamma->set_shape(params_dims);
tensor::TensorPtr beta = std::make_shared<tensor::Tensor>();
beta->set_data_type(kNumberTypeFloat32);
beta->set_shape(params_dims);
AbstractBasePtr abstract_inputs = FromValue(inputs, true);
AbstractBasePtr abstract_mean_var = FromValue(mean_var, true);
AbstractBasePtr abstract_gamma = FromValue(gamma, true);
AbstractBasePtr abstract_beta = FromValue(beta, true);
AbstractBasePtrList args_spec_list = {abstract_inputs, abstract_gamma, abstract_beta};
AbstractBasePtr expected0 = abstract_inputs->Clone();
AbstractBasePtr expected1 = abstract_mean_var->Clone();
AbstractBasePtr expected2 = abstract_mean_var->Clone();
AbstractBasePtr res = engine_->Run(func_graph, args_spec_list).inferred->abstract();
MS_LOG(INFO) << "result: " << res->ToString();
MS_LOG(INFO) << "expected0: " << expected0->ToString();
MS_LOG(INFO) << "expected1: " << expected1->ToString();
MS_LOG(INFO) << "expected2: " << expected2->ToString();
std::shared_ptr<AbstractTuple> abs_tuple = dyn_cast<AbstractTuple>(res);
ASSERT_TRUE(abs_tuple != nullptr);
auto res_ptr0 = dyn_cast<AbstractTensor>(abs_tuple->elements()[0]);
auto expected_ptr0 = dyn_cast<AbstractTensor>(expected0);
ASSERT_TRUE(*res_ptr0->shape() == *expected_ptr0->shape());
ASSERT_TRUE(*res_ptr0->element() == *expected_ptr0->element());
auto res_ptr1 = dyn_cast<AbstractTensor>(abs_tuple->elements()[1]);
auto expected_ptr1 = dyn_cast<AbstractTensor>(expected1);
ASSERT_TRUE(*res_ptr1->shape() == *expected_ptr1->shape());
ASSERT_TRUE(*res_ptr1->element() == *expected_ptr1->element());
auto res_ptr2 = dyn_cast<AbstractTensor>(abs_tuple->elements()[2]);
auto expected_ptr2 = dyn_cast<AbstractTensor>(expected2);
ASSERT_TRUE(*res_ptr2->shape() == *expected_ptr2->shape());
ASSERT_TRUE(*res_ptr2->element() == *expected_ptr2->element());
}
TEST_F(TestPrim, test_DropoutGenMask) {
AbstractBasePtrList args_spec_list;
auto arg0 = UTPrimUtils::ShapeOf({5, 5, 5, 5});
std::vector<int> keep_prob_shape = {};
tensor::TensorPtr keep_prob = std::make_shared<tensor::Tensor>(0.5f);
keep_prob->set_data_type(kNumberTypeFloat32);
keep_prob->set_shape(keep_prob_shape);
AbstractBasePtr abstract_keep_prob = FromValue(keep_prob);
auto prim = std::make_shared<Primitive>("DropoutGenMask");
std::shared_ptr<FuncGraph> func_graph = MakeFuncGraph(prim, 2);
args_spec_list.push_back(arg0);
args_spec_list.push_back(abstract_keep_prob);
// should return a tensor with on dimension of 79 elements
AbstractBasePtr expected = std::make_shared<AbstractTensor>(std::make_shared<AbstractScalar>(kAnyValue, kUInt8),
std::make_shared<Shape>(std::vector<int>{79}));
AbstractBasePtr res = engine_->Run(func_graph, args_spec_list).inferred->abstract();
MS_LOG(INFO) << "res=" << res->ToString();
MS_LOG(INFO) << "expected=" << expected->ToString();
ASSERT_TRUE(*res == *expected);
}
TEST_F(TestPrim, test_dropout) {
std::shared_ptr<py::scoped_interpreter> env = python_adapter::set_python_scoped();
std::shared_ptr<FuncGraph> func_graph = getPyFun.CallAndParseRet("test_dropout");
std::vector<int> inputs_dims = {2, 20, 32, 32};
tensor::TensorPtr inputs = std::make_shared<tensor::Tensor>();
inputs->set_data_type(kNumberTypeFloat32);
inputs->set_shape(inputs_dims);
AbstractBasePtr abstract_inputs = FromValue(inputs, true);
std::vector<int> keep_prob_shape = {};
tensor::TensorPtr keep_prob = std::make_shared<tensor::Tensor>(0.5f);
keep_prob->set_data_type(kNumberTypeFloat32);
keep_prob->set_shape(keep_prob_shape);
AbstractBasePtr abstract_keep_prob = FromValue(keep_prob);
AbstractBasePtrList args_spec_list = {abstract_inputs, abstract_keep_prob};
AbstractBasePtr expected = abstract_inputs->Clone();
// NCHW
std::vector<int> shape = {2, 20, 32, 32};
expected->set_shape(std::make_shared<Shape>(shape));
AbstractBasePtr res = engine_->Run(func_graph, args_spec_list).inferred->abstract();
MS_LOG(INFO) << "result: " << res->ToString();
MS_LOG(INFO) << "expected: " << expected->ToString();
auto res_ptr = dyn_cast<AbstractTensor>(res);
auto expected_ptr = dyn_cast<AbstractTensor>(expected);
ASSERT_TRUE(*res_ptr->shape() == *expected_ptr->shape());
ASSERT_TRUE(*res_ptr->element() == *expected_ptr->element());
}
TEST_F(TestPrim, test_BroadcastGradientArgs_01_dim) {
PrimitivePtr broadcatGradientArgs = prim::kPrimBroadcastGradientArgs;
std::shared_ptr<FuncGraph> func_graph = MakeFuncGraph(broadcatGradientArgs, 2);
// broadcast shape: x: 8,5,3, y:3
// output: ((),(0, 1))
AbstractBasePtrList x_arg_list({abstract::FromValue(8), abstract::FromValue(5), abstract::FromValue(3)});
AbstractBasePtrList y_arg_list({abstract::FromValue(3)});
auto x_input = std::make_shared<AbstractTuple>(x_arg_list);
auto y_input = std::make_shared<AbstractTuple>(y_arg_list);
AbstractBasePtrList args_spec_list = {x_input, y_input};
AbstractBasePtr ret = engine_->Run(func_graph, args_spec_list).inferred->abstract();
auto res = dyn_cast<AbstractTuple>(ret);
AbstractBasePtrList x_idx_list;
auto r_x = std::make_shared<AbstractTuple>(x_idx_list);
AbstractBasePtrList y_idx_list({abstract::FromValue(0), abstract::FromValue(1)});
auto r_y = std::make_shared<AbstractTuple>(y_idx_list);
AbstractBasePtrList elem_list({r_x, r_y});
auto expected = std::make_shared<AbstractTuple>(elem_list);
MS_LOG(INFO) << "result: " << res->ToString();
MS_LOG(INFO) << "expected: " << expected->ToString();
ASSERT_TRUE(*res == *expected);
}
TEST_F(TestPrim, test_BroadcastGradientArgs_1_dim) {
PrimitivePtr broadcatGradientArgs = prim::kPrimBroadcastGradientArgs;
std::shared_ptr<FuncGraph> func_graph = MakeFuncGraph(broadcatGradientArgs, 2);
// broadcast shape: x: 8,1,3, y:8 5 3
// output: ((1),())
AbstractBasePtrList x_arg_list({abstract::FromValue(8), abstract::FromValue(1), abstract::FromValue(3)});
AbstractBasePtrList y_arg_list({abstract::FromValue(8), abstract::FromValue(5), abstract::FromValue(3)});
auto x_input = std::make_shared<AbstractTuple>(x_arg_list);
auto y_input = std::make_shared<AbstractTuple>(y_arg_list);
AbstractBasePtrList args_spec_list = {x_input, y_input};
AbstractBasePtr ret = engine_->Run(func_graph, args_spec_list).inferred->abstract();
auto res = dyn_cast<AbstractTuple>(ret);
AbstractBasePtrList x_idx_list({abstract::FromValue(1)});
auto r_x = std::make_shared<AbstractTuple>(x_idx_list);
AbstractBasePtrList y_idx_list;
auto r_y = std::make_shared<AbstractTuple>(y_idx_list);
AbstractBasePtrList elem_list({r_x, r_y});
auto expected = std::make_shared<AbstractTuple>(elem_list);
MS_LOG(INFO) << "result: " << res->ToString();
MS_LOG(INFO) << "expected: " << expected->ToString();
ASSERT_TRUE(*res == *expected);
}
TEST_F(TestPrim, test_DictGetItem) {
PrimitivePtr dictGetItem = prim::kPrimDictGetItem;
std::shared_ptr<FuncGraph> func_graph = MakeFuncGraph(dictGetItem, 2);
std::vector<std::pair<std::string, ValuePtr>> tensor_map = {
{"x", std::make_shared<tensor::Tensor>(kNumberTypeInt32, std::vector<int>{2, 3, 4})},
{"y", std::make_shared<tensor::Tensor>(kNumberTypeInt32, std::vector<int>{2, 1, 4})}};
ValueDictionary value_dict(tensor_map);
AbstractBasePtr array_dict = value_dict.ToAbstract();
AbstractBasePtr key = abstract::FromValue("x");
AbstractBasePtrList args_spec_list = {array_dict, key};
AbstractBasePtr ret = engine_->Run(func_graph, args_spec_list).inferred->abstract();
AbstractTensorPtr tensor_ret = dyn_cast<AbstractTensor>(ret);
AbstractTensorPtr expect = dyn_cast<AbstractTensor>(FromValue(tensor_map[0].second));
ASSERT_TRUE(*tensor_ret == *expect);
}
TEST_F(TestPrim, test_DictGetItem2) {
PrimitivePtr dictGetItem = prim::kPrimDictGetItem;
std::shared_ptr<FuncGraph> func_graph = MakeFuncGraph(dictGetItem, 2);
AbstractBasePtr arr_x = ArrayOfTensor(UTPrimUtils::kF64, {3, 4, 5});
AbstractBasePtr arr_y = ArrayOfTensor(UTPrimUtils::kF64, {1, 4, 5});
AbstractBasePtr arr_z = ArrayOfTensor(UTPrimUtils::kF64, {3, 1, 5});
std::vector<AbstractAttribute> array_map = {{"x", arr_x}, {"y", arr_y}, {"z", arr_z}};
AbstractDictionaryPtr array_dict = std::make_shared<AbstractDictionary>(array_map);
AbstractBasePtr key = abstract::FromValue("x");
AbstractBasePtrList args_spec_list = {array_dict, key};
AbstractBasePtr ret = engine_->Run(func_graph, args_spec_list).inferred->abstract();
AbstractTensorPtr tensor_ret = dyn_cast<AbstractTensor>(ret);
AbstractTensorPtr expect = dyn_cast<AbstractTensor>(arr_x);
ASSERT_TRUE(*tensor_ret == *expect);
}
*/
} // namespace abstract
} // namespace mindspore