You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
68 lines
2.6 KiB
68 lines
2.6 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""Convert ckpt to air."""
|
|
import os
|
|
import argparse
|
|
import numpy as np
|
|
|
|
from mindspore import context
|
|
from mindspore import Tensor
|
|
from mindspore.train.serialization import export, load_checkpoint, load_param_into_net
|
|
|
|
from src.reid_for_export import SphereNet
|
|
|
|
devid = int(os.getenv('DEVICE_ID'))
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True, device_id=devid)
|
|
|
|
|
|
def main(args):
|
|
network = SphereNet(num_layers=12, feature_dim=128, shape=(96, 64))
|
|
ckpt_path = args.pretrained
|
|
if os.path.isfile(ckpt_path):
|
|
param_dict = load_checkpoint(ckpt_path)
|
|
param_dict_new = {}
|
|
for key, values in param_dict.items():
|
|
if key.startswith('moments.'):
|
|
continue
|
|
elif key.startswith('model.'):
|
|
param_dict_new[key[6:]] = values
|
|
else:
|
|
param_dict_new[key] = values
|
|
load_param_into_net(network, param_dict_new)
|
|
print('-----------------------load model success-----------------------')
|
|
else:
|
|
print('-----------------------load model failed -----------------------')
|
|
|
|
network.add_flags_recursive(fp16=True)
|
|
network.set_train(False)
|
|
|
|
input_data = np.random.uniform(low=0, high=1.0, size=(args.batch_size, 3, 96, 64)).astype(np.float32)
|
|
tensor_input_data = Tensor(input_data)
|
|
|
|
export(network, tensor_input_data, file_name=ckpt_path.replace('.ckpt', '_' + str(args.batch_size) + 'b.air'),
|
|
file_format='AIR')
|
|
print('-----------------------export model success-----------------------')
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
parser = argparse.ArgumentParser(description='Convert ckpt to air')
|
|
parser.add_argument('--pretrained', type=str, default='', help='pretrained model to load')
|
|
parser.add_argument('--batch_size', type=int, default=8, help='batch size')
|
|
|
|
arg = parser.parse_args()
|
|
|
|
main(arg)
|