|
4 years ago | |
---|---|---|
.. | ||
fig | 4 years ago | |
src | 4 years ago | |
eval.py | 4 years ago | |
mindpsore_hub_conf.py | 4 years ago | |
readme.md | 4 years ago |
readme.md
Contents
- TNT Description
- Model Architecture
- Dataset
- Environment Requirements
- Script Description
- Model Description
- Description of Random Situation
- ModelZoo Homepage
TNT Description
The TNT (Transformer in Transformer) network is a pure transformer model for visual recognition. TNT treats an image as a sequence of patches and treats a patch as a sequence of pixels. TNT block utilizes a outer transformer block to process the sequence of patches and an inner transformer block to process the sequence of pixels.
Paper: Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu, Yunhe Wang. Transformer in Transformer. preprint 2021.
Model architecture
The overall network architecture of TNT is show below:
Dataset
Dataset used: Oxford-IIIT Pet
- Dataset size: 7049 colorful images in 1000 classes
- Train: 3680 images
- Test: 3369 images
- Data format: RGB images.
- Note: Data will be processed in src/dataset.py
Environment Requirements
- Hardware(Ascend/GPU)
- Prepare hardware environment with Ascend or GPU.
- Framework
- For more information, please check the resources below£º
Script description
Script and sample code
TNT
├── eval.py # inference entry
├── fig
│ └── tnt.png # the illustration of TNT network
├── readme.md # Readme
└── src
├── config.py # config of model and data
├── pet_dataset.py # dataset loader
└── tnt.py # TNT network
Training process
To Be Done
Eval process
Usage
After installing MindSpore via the official website, you can start evaluation as follows:
Launch
# infer example
GPU: python eval.py --model tnt-b --dataset_path ~/Pets/test.mindrecord --platform GPU --checkpoint_path [CHECKPOINT_PATH]
checkpoint can be downloaded at https://www.mindspore.cn/resources/hub.
Result
result: {'acc': 0.95} ckpt= ./tnt-b-pets.ckpt
Model Description
Performance
Evaluation Performance
TNT on ImageNet2012
Parameters | ||
---|---|---|
Model Version | TNT-B | TNT-S |
uploaded Date | 21/03/2021 (month/day/year) | 21/03/2021 (month/day/year) |
MindSpore Version | 1.1 | 1.1 |
Dataset | ImageNet2012 | ImageNet2012 |
Input size | 224x224 | 224x224 |
Parameters (M) | 86.4 | 23.8 |
FLOPs (M) | 14.1 | 5.2 |
Accuracy (Top1) | 82.8 | 81.3 |
TNT on Oxford-IIIT Pet
Parameters | ||
---|---|---|
Model Version | TNT-B | TNT-S |
uploaded Date | 21/03/2021 (month/day/year) | 21/03/2021 (month/day/year) |
MindSpore Version | 1.1 | 1.1 |
Dataset | Oxford-IIIT Pet | Oxford-IIIT Pet |
Input size | 384x384 | 384x384 |
Parameters (M) | 86.4 | 23.8 |
Accuracy (Top1) | 95.0 | 94.7 |
Description of Random Situation
In dataset.py, we set the seed inside "create_dataset" function. We also use random seed in train.py.
ModelZoo Homepage
Please check the official homepage.