You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/cpp/dataset/celeba_op_test.cc

157 lines
6.3 KiB

/**
* Copyright 2020-2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <memory>
#include <string>
#include "common/common.h"
#include "minddata/dataset/core/client.h"
#include "minddata/dataset/engine/datasetops/source/celeba_op.h"
#include "minddata/dataset/engine/datasetops/source/sampler/subset_random_sampler.h"
#include "minddata/dataset/util/status.h"
#include "gtest/gtest.h"
#include "utils/log_adapter.h"
#include "securec.h"
using namespace mindspore::dataset;
using mindspore::MsLogLevel::ERROR;
using mindspore::ExceptionType::NoExceptionType;
using mindspore::LogStream;
std::shared_ptr<RepeatOp> Repeat(int repeat_cnt);
std::shared_ptr<ExecutionTree> Build(std::vector<std::shared_ptr<DatasetOp>> ops);
std::shared_ptr<CelebAOp> Celeba(int32_t num_workers, int32_t rows_per_buffer, int32_t queue_size,
const std::string &dir, std::shared_ptr<SamplerRT> sampler = nullptr,
bool decode = false, const std::string &dataset_type = "all") {
std::shared_ptr<CelebAOp> so;
CelebAOp::Builder builder;
Status rc = builder.SetNumWorkers(num_workers)
.SetCelebADir(dir)
.SetRowsPerBuffer(rows_per_buffer)
.SetOpConnectorSize(queue_size)
.SetSampler(std::move(sampler))
.SetDecode(decode)
.SetUsage(dataset_type).Build(&so);
return so;
}
class MindDataTestCelebaDataset : public UT::DatasetOpTesting {
protected:
};
TEST_F(MindDataTestCelebaDataset, TestSequentialCeleba) {
std::string dir = datasets_root_path_ + "/testCelebAData/";
uint32_t expect_labels[4][40] = {{0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,1,0,0,1,0,0,0,1,1,0,1,0,1,0,0,1},
{0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1},
{0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1},
{0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,1,0,0,1,0,0,0,1,1,0,1,0,1,0,0,1}};
uint32_t count = 0;
auto tree = Build({Celeba(16, 2, 32, dir)});
tree->Prepare();
Status rc = tree->Launch();
if (rc.IsError()) {
MS_LOG(ERROR) << "Return code error detected during tree launch: " << rc.ToString() << ".";
EXPECT_TRUE(false);
} else {
DatasetIterator di(tree);
TensorMap tersor_map;
di.GetNextAsMap(&tersor_map);
EXPECT_TRUE(rc.IsOk());
while (tersor_map.size() != 0) {
uint32_t label;
for (int index = 0; index < 40; index++) {
tersor_map["attr"]->GetItemAt<uint32_t>(&label, {index});
EXPECT_TRUE(expect_labels[count][index] == label);
}
count++;
di.GetNextAsMap(&tersor_map);
}
EXPECT_TRUE(count == 4);
}
}
TEST_F(MindDataTestCelebaDataset, TestCelebaRepeat) {
std::string dir = datasets_root_path_ + "/testCelebAData/";
uint32_t expect_labels[8][40] = {{0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,1,0,0,1,0,0,0,1,1,0,1,0,1,0,0,1},
{0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1},
{0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1},
{0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,1,0,0,1,0,0,0,1,1,0,1,0,1,0,0,1},
{0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,1,0,0,1,0,0,0,1,1,0,1,0,1,0,0,1},
{0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1},
{0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1},
{0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,1,0,0,1,0,0,0,1,1,0,1,0,1,0,0,1}};
uint32_t count = 0;
auto op1 = Celeba(16, 2, 32, dir);
auto op2 = Repeat(2);
auto tree = Build({op1, op2});
op1->set_total_repeats(2);
op1->set_num_repeats_per_epoch(2);
tree->Prepare();
Status rc = tree->Launch();
if (rc.IsError()) {
MS_LOG(ERROR) << "Return code error detected during tree launch: " << rc.ToString() << ".";
EXPECT_TRUE(false);
} else {
DatasetIterator di(tree);
TensorMap tersor_map;
di.GetNextAsMap(&tersor_map);
EXPECT_TRUE(rc.IsOk());
while (tersor_map.size() != 0) {
uint32_t label;
for (int index = 0; index < 40; index++) {
tersor_map["attr"]->GetItemAt<uint32_t>(&label, {index});
EXPECT_TRUE(expect_labels[count][index] == label);
}
count++;
di.GetNextAsMap(&tersor_map);
}
EXPECT_TRUE(count == 8);
}
}
TEST_F(MindDataTestCelebaDataset, TestSubsetRandomSamplerCeleba) {
std::vector<int64_t> indices({1});
int64_t num_samples = 0;
std::shared_ptr<SamplerRT> sampler = std::make_shared<SubsetRandomSamplerRT>(num_samples, indices);
uint32_t expect_labels[1][40] = {{0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1}};
std::string dir = datasets_root_path_ + "/testCelebAData/";
uint32_t count = 0;
auto tree = Build({Celeba(16, 2, 32, dir, std::move(sampler))});
tree->Prepare();
Status rc = tree->Launch();
if (rc.IsError()) {
MS_LOG(ERROR) << "Return code error detected during tree launch: " << rc.ToString() << ".";
EXPECT_TRUE(false);
} else {
DatasetIterator di(tree);
TensorMap tersor_map;
di.GetNextAsMap(&tersor_map);
EXPECT_TRUE(rc.IsOk());
while (tersor_map.size() != 0) {
uint32_t label;
for (int index = 0; index < 40; index++) {
tersor_map["attr"]->GetItemAt<uint32_t>(&label, {index});
EXPECT_TRUE(expect_labels[count][index] == label);
}
count++;
di.GetNextAsMap(&tersor_map);
}
EXPECT_TRUE(count == 1);
}
}