You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/cpp/dataset/image_process_test.cc

1896 lines
67 KiB

/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "common/common.h"
#include "lite_cv/lite_mat.h"
#include "lite_cv/image_process.h"
#include <opencv2/opencv.hpp>
#include <opencv2/imgproc/types_c.h>
#include <fstream>
using namespace mindspore::dataset;
class MindDataImageProcess : public UT::Common {
public:
MindDataImageProcess() {}
void SetUp() {}
};
void CompareMat(cv::Mat cv_mat, LiteMat lite_mat) {
int cv_h = cv_mat.rows;
int cv_w = cv_mat.cols;
int cv_c = cv_mat.channels();
int lite_h = lite_mat.height_;
int lite_w = lite_mat.width_;
int lite_c = lite_mat.channel_;
ASSERT_TRUE(cv_h == lite_h);
ASSERT_TRUE(cv_w == lite_w);
ASSERT_TRUE(cv_c == lite_c);
}
void Lite3CImageProcess(LiteMat &lite_mat_bgr, LiteMat &lite_norm_mat_cut) {
bool ret;
LiteMat lite_mat_resize;
ret = ResizeBilinear(lite_mat_bgr, lite_mat_resize, 256, 256);
ASSERT_TRUE(ret == true);
LiteMat lite_mat_convert_float;
ret = ConvertTo(lite_mat_resize, lite_mat_convert_float, 1.0);
ASSERT_TRUE(ret == true);
LiteMat lite_mat_crop;
ret = Crop(lite_mat_convert_float, lite_mat_crop, 16, 16, 224, 224);
ASSERT_TRUE(ret == true);
std::vector<float> means = {0.485, 0.456, 0.406};
std::vector<float> stds = {0.229, 0.224, 0.225};
SubStractMeanNormalize(lite_mat_crop, lite_norm_mat_cut, means, stds);
return;
}
cv::Mat cv3CImageProcess(cv::Mat &image) {
cv::Mat resize_256_image;
cv::resize(image, resize_256_image, cv::Size(256, 256), CV_INTER_LINEAR);
cv::Mat float_256_image;
resize_256_image.convertTo(float_256_image, CV_32FC3);
cv::Mat roi_224_image;
cv::Rect roi;
roi.x = 16;
roi.y = 16;
roi.width = 224;
roi.height = 224;
float_256_image(roi).copyTo(roi_224_image);
float meanR = 0.485;
float meanG = 0.456;
float meanB = 0.406;
float varR = 0.229;
float varG = 0.224;
float varB = 0.225;
cv::Scalar mean = cv::Scalar(meanR, meanG, meanB);
cv::Scalar var = cv::Scalar(varR, varG, varB);
cv::Mat imgMean(roi_224_image.size(), CV_32FC3, mean);
cv::Mat imgVar(roi_224_image.size(), CV_32FC3, var);
cv::Mat imgR1 = roi_224_image - imgMean;
cv::Mat imgR2 = imgR1 / imgVar;
return imgR2;
}
void AccuracyComparison(const std::vector<std::vector<double>> &expect, LiteMat &value) {
for (int i = 0; i < expect.size(); i++) {
for (int j = 0; j < expect[0].size(); j++) {
double middle = std::fabs(expect[i][j] - value.ptr<double>(i)[j]);
ASSERT_TRUE(middle <= 0.005);
}
}
}
TEST_F(MindDataImageProcess, testRGB) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
cv::Mat rgba_mat;
cv::cvtColor(image, rgba_mat, CV_BGR2RGB);
bool ret = false;
LiteMat lite_mat_rgb;
ret = InitFromPixel(rgba_mat.data, LPixelType::RGB, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_rgb);
ASSERT_TRUE(ret == true);
cv::Mat dst_image(lite_mat_rgb.height_, lite_mat_rgb.width_, CV_8UC3, lite_mat_rgb.data_ptr_);
}
TEST_F(MindDataImageProcess, testLoadByMemPtr) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
cv::Mat rgba_mat;
cv::cvtColor(image, rgba_mat, CV_BGR2RGB);
bool ret = false;
int width = rgba_mat.cols;
int height = rgba_mat.rows;
uchar *p_rgb = (uchar *)malloc(width * height * 3 * sizeof(uchar));
for (int i = 0; i < height; i++) {
const uchar *current = rgba_mat.ptr<uchar>(i);
for (int j = 0; j < width; j++) {
p_rgb[i * width * 3 + 3 * j + 0] = current[3 * j + 0];
p_rgb[i * width * 3 + 3 * j + 1] = current[3 * j + 1];
p_rgb[i * width * 3 + 3 * j + 2] = current[3 * j + 2];
}
}
LiteMat lite_mat_rgb(width, height, 3, (void *)p_rgb, LDataType::UINT8);
LiteMat lite_mat_resize;
ret = ResizeBilinear(lite_mat_rgb, lite_mat_resize, 256, 256);
ASSERT_TRUE(ret == true);
LiteMat lite_mat_convert_float;
ret = ConvertTo(lite_mat_resize, lite_mat_convert_float, 1.0);
ASSERT_TRUE(ret == true);
LiteMat lite_mat_crop;
ret = Crop(lite_mat_convert_float, lite_mat_crop, 16, 16, 224, 224);
ASSERT_TRUE(ret == true);
std::vector<float> means = {0.485, 0.456, 0.406};
std::vector<float> stds = {0.229, 0.224, 0.225};
LiteMat lite_norm_mat_cut;
ret = SubStractMeanNormalize(lite_mat_crop, lite_norm_mat_cut, means, stds);
int pad_width = lite_norm_mat_cut.width_ + 20;
int pad_height = lite_norm_mat_cut.height_ + 20;
float *p_rgb_pad = (float *)malloc(pad_width * pad_height * 3 * sizeof(float));
LiteMat makeborder(pad_width, pad_height, 3, (void *)p_rgb_pad, LDataType::FLOAT32);
ret = Pad(lite_norm_mat_cut, makeborder, 10, 30, 40, 10, PaddBorderType::PADD_BORDER_CONSTANT, 255, 255, 255);
cv::Mat dst_image(pad_height, pad_width, CV_8UC3, p_rgb_pad);
free(p_rgb);
free(p_rgb_pad);
}
TEST_F(MindDataImageProcess, test3C) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
cv::Mat cv_image = cv3CImageProcess(image);
// convert to RGBA for Android bitmap(rgba)
cv::Mat rgba_mat;
cv::cvtColor(image, rgba_mat, CV_BGR2RGBA);
bool ret = false;
LiteMat lite_mat_bgr;
ret =
InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
ASSERT_TRUE(ret == true);
LiteMat lite_norm_mat_cut;
Lite3CImageProcess(lite_mat_bgr, lite_norm_mat_cut);
cv::Mat dst_image(lite_norm_mat_cut.height_, lite_norm_mat_cut.width_, CV_32FC3, lite_norm_mat_cut.data_ptr_);
CompareMat(cv_image, lite_norm_mat_cut);
}
bool ReadYUV(const char *filename, int w, int h, uint8_t **data) {
FILE *f = fopen(filename, "rb");
if (f == nullptr) {
return false;
}
fseek(f, 0, SEEK_END);
int size = ftell(f);
int expect_size = w * h + 2 * ((w + 1) / 2) * ((h + 1) / 2);
if (size != expect_size) {
fclose(f);
return false;
}
fseek(f, 0, SEEK_SET);
*data = (uint8_t *)malloc(size);
size_t re = fread(*data, 1, size, f);
if (re != size) {
fclose(f);
return false;
}
fclose(f);
return true;
}
TEST_F(MindDataImageProcess, TestRGBA2GRAY) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
cv::Mat gray_image;
cv::cvtColor(src_image, gray_image, CV_BGR2GRAY);
cv::Mat rgba_mat;
cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
bool ret = false;
LiteMat lite_mat_gray;
ret =
InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray);
ASSERT_TRUE(ret == true);
double distance = 0.f;
int total_size = gray_image.cols * gray_image.rows * gray_image.channels();
for (int i = 0; i < total_size; i++) {
distance += pow((uint8_t)gray_image.data[i] - ((uint8_t *)lite_mat_gray)[i], 2);
}
distance = sqrt(distance / total_size);
EXPECT_EQ(distance, 0.0f);
}
TEST_F(MindDataImageProcess, testNV21ToBGR) {
// ffmpeg -i ./data/dataset/apple.jpg -s 1024*800 -pix_fmt nv21 ./data/dataset/yuv/test_nv21.yuv
const char *filename = "data/dataset/yuv/test_nv21.yuv";
int w = 1024;
int h = 800;
uint8_t *yuv_data = nullptr;
bool ret = ReadYUV(filename, w, h, &yuv_data);
ASSERT_TRUE(ret == true);
cv::Mat yuvimg(h * 3 / 2, w, CV_8UC1);
memcpy(yuvimg.data, yuv_data, w * h * 3 / 2);
cv::Mat rgbimage;
cv::cvtColor(yuvimg, rgbimage, cv::COLOR_YUV2BGR_NV21);
LiteMat lite_mat_bgr;
ret = InitFromPixel(yuv_data, LPixelType::NV212BGR, LDataType::UINT8, w, h, lite_mat_bgr);
ASSERT_TRUE(ret == true);
cv::Mat dst_image(lite_mat_bgr.height_, lite_mat_bgr.width_, CV_8UC3, lite_mat_bgr.data_ptr_);
}
TEST_F(MindDataImageProcess, testNV12ToBGR) {
// ffmpeg -i ./data/dataset/apple.jpg -s 1024*800 -pix_fmt nv12 ./data/dataset/yuv/test_nv12.yuv
const char *filename = "data/dataset/yuv/test_nv12.yuv";
int w = 1024;
int h = 800;
uint8_t *yuv_data = nullptr;
bool ret = ReadYUV(filename, w, h, &yuv_data);
ASSERT_TRUE(ret == true);
cv::Mat yuvimg(h * 3 / 2, w, CV_8UC1);
memcpy(yuvimg.data, yuv_data, w * h * 3 / 2);
cv::Mat rgbimage;
cv::cvtColor(yuvimg, rgbimage, cv::COLOR_YUV2BGR_NV12);
LiteMat lite_mat_bgr;
ret = InitFromPixel(yuv_data, LPixelType::NV122BGR, LDataType::UINT8, w, h, lite_mat_bgr);
ASSERT_TRUE(ret == true);
cv::Mat dst_image(lite_mat_bgr.height_, lite_mat_bgr.width_, CV_8UC3, lite_mat_bgr.data_ptr_);
}
TEST_F(MindDataImageProcess, testExtractChannel) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
cv::Mat dst_image;
cv::extractChannel(src_image, dst_image, 2);
// convert to RGBA for Android bitmap(rgba)
cv::Mat rgba_mat;
cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
bool ret = false;
LiteMat lite_mat_bgr;
ret =
InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
ASSERT_TRUE(ret == true);
LiteMat lite_B;
ret = ExtractChannel(lite_mat_bgr, lite_B, 0);
ASSERT_TRUE(ret == true);
LiteMat lite_R;
ret = ExtractChannel(lite_mat_bgr, lite_R, 2);
ASSERT_TRUE(ret == true);
cv::Mat dst_imageR(lite_R.height_, lite_R.width_, CV_8UC1, lite_R.data_ptr_);
// cv::imwrite("./test_lite_r.jpg", dst_imageR);
}
TEST_F(MindDataImageProcess, testSplit) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
std::vector<cv::Mat> dst_images;
cv::split(src_image, dst_images);
// convert to RGBA for Android bitmap(rgba)
cv::Mat rgba_mat;
cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
bool ret = false;
LiteMat lite_mat_bgr;
ret =
InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
ASSERT_TRUE(ret == true);
std::vector<LiteMat> lite_all;
ret = Split(lite_mat_bgr, lite_all);
ASSERT_TRUE(ret == true);
ASSERT_TRUE(lite_all.size() == 3);
LiteMat lite_r = lite_all[2];
cv::Mat dst_imageR(lite_r.height_, lite_r.width_, CV_8UC1, lite_r.data_ptr_);
}
TEST_F(MindDataImageProcess, testMerge) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
std::vector<cv::Mat> dst_images;
cv::split(src_image, dst_images);
// convert to RGBA for Android bitmap(rgba)
cv::Mat rgba_mat;
cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
bool ret = false;
LiteMat lite_mat_bgr;
ret =
InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
ASSERT_TRUE(ret == true);
std::vector<LiteMat> lite_all;
ret = Split(lite_mat_bgr, lite_all);
ASSERT_TRUE(ret == true);
ASSERT_TRUE(lite_all.size() == 3);
LiteMat lite_r = lite_all[2];
cv::Mat dst_imageR(lite_r.height_, lite_r.width_, CV_8UC1, lite_r.data_ptr_);
LiteMat merge_mat;
EXPECT_TRUE(Merge(lite_all, merge_mat));
EXPECT_EQ(merge_mat.height_, lite_mat_bgr.height_);
EXPECT_EQ(merge_mat.width_, lite_mat_bgr.width_);
EXPECT_EQ(merge_mat.channel_, lite_mat_bgr.channel_);
}
void Lite1CImageProcess(LiteMat &lite_mat_bgr, LiteMat &lite_norm_mat_cut) {
LiteMat lite_mat_resize;
int ret = ResizeBilinear(lite_mat_bgr, lite_mat_resize, 256, 256);
ASSERT_TRUE(ret == true);
LiteMat lite_mat_convert_float;
ret = ConvertTo(lite_mat_resize, lite_mat_convert_float);
ASSERT_TRUE(ret == true);
LiteMat lite_mat_cut;
ret = Crop(lite_mat_convert_float, lite_mat_cut, 16, 16, 224, 224);
ASSERT_TRUE(ret == true);
std::vector<float> means = {0.485};
std::vector<float> stds = {0.229};
ret = SubStractMeanNormalize(lite_mat_cut, lite_norm_mat_cut, means, stds);
ASSERT_TRUE(ret == true);
return;
}
cv::Mat cv1CImageProcess(cv::Mat &image) {
cv::Mat gray_image;
cv::cvtColor(image, gray_image, CV_BGR2GRAY);
cv::Mat resize_256_image;
cv::resize(gray_image, resize_256_image, cv::Size(256, 256), CV_INTER_LINEAR);
cv::Mat float_256_image;
resize_256_image.convertTo(float_256_image, CV_32FC3);
cv::Mat roi_224_image;
cv::Rect roi;
roi.x = 16;
roi.y = 16;
roi.width = 224;
roi.height = 224;
float_256_image(roi).copyTo(roi_224_image);
float meanR = 0.485;
float varR = 0.229;
cv::Scalar mean = cv::Scalar(meanR);
cv::Scalar var = cv::Scalar(varR);
cv::Mat imgMean(roi_224_image.size(), CV_32FC1, mean);
cv::Mat imgVar(roi_224_image.size(), CV_32FC1, var);
cv::Mat imgR1 = roi_224_image - imgMean;
cv::Mat imgR2 = imgR1 / imgVar;
return imgR2;
}
TEST_F(MindDataImageProcess, test1C) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
cv::Mat cv_image = cv1CImageProcess(image);
// convert to RGBA for Android bitmap(rgba)
cv::Mat rgba_mat;
cv::cvtColor(image, rgba_mat, CV_BGR2RGBA);
LiteMat lite_mat_bgr;
bool ret =
InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
ASSERT_TRUE(ret == true);
LiteMat lite_norm_mat_cut;
Lite1CImageProcess(lite_mat_bgr, lite_norm_mat_cut);
cv::Mat dst_image(lite_norm_mat_cut.height_, lite_norm_mat_cut.width_, CV_32FC1, lite_norm_mat_cut.data_ptr_);
CompareMat(cv_image, lite_norm_mat_cut);
}
TEST_F(MindDataImageProcess, TestPadd) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
int left = 10;
int right = 20;
int top = 30;
int bottom = 40;
cv::Mat b_image;
cv::Scalar color = cv::Scalar(255, 255, 255);
cv::copyMakeBorder(image, b_image, top, bottom, left, right, cv::BORDER_CONSTANT, color);
cv::Mat rgba_mat;
cv::cvtColor(image, rgba_mat, CV_BGR2RGBA);
LiteMat lite_mat_bgr;
bool ret =
InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
ASSERT_TRUE(ret == true);
LiteMat makeborder;
ret = Pad(lite_mat_bgr, makeborder, top, bottom, left, right, PaddBorderType::PADD_BORDER_CONSTANT, 255, 255, 255);
ASSERT_TRUE(ret == true);
size_t total_size = makeborder.height_ * makeborder.width_ * makeborder.channel_;
double distance = 0.0f;
for (size_t i = 0; i < total_size; i++) {
distance += pow((uint8_t)b_image.data[i] - ((uint8_t *)makeborder)[i], 2);
}
distance = sqrt(distance / total_size);
EXPECT_EQ(distance, 0.0f);
}
TEST_F(MindDataImageProcess, TestPadZero) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
int left = 0;
int right = 0;
int top = 0;
int bottom = 0;
cv::Mat b_image;
cv::Scalar color = cv::Scalar(255, 255, 255);
cv::copyMakeBorder(image, b_image, top, bottom, left, right, cv::BORDER_CONSTANT, color);
cv::Mat rgba_mat;
cv::cvtColor(image, rgba_mat, CV_BGR2RGBA);
LiteMat lite_mat_bgr;
bool ret =
InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
ASSERT_TRUE(ret == true);
LiteMat makeborder;
ret = Pad(lite_mat_bgr, makeborder, top, bottom, left, right, PaddBorderType::PADD_BORDER_CONSTANT, 255, 255, 255);
ASSERT_TRUE(ret == true);
size_t total_size = makeborder.height_ * makeborder.width_ * makeborder.channel_;
double distance = 0.0f;
for (size_t i = 0; i < total_size; i++) {
distance += pow((uint8_t)b_image.data[i] - ((uint8_t *)makeborder)[i], 2);
}
distance = sqrt(distance / total_size);
EXPECT_EQ(distance, 0.0f);
}
TEST_F(MindDataImageProcess, TestPadReplicate) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
int left = 20;
int right = 20;
int top = 20;
int bottom = 20;
cv::Mat b_image;
cv::copyMakeBorder(image, b_image, top, bottom, left, right, cv::BORDER_REPLICATE);
cv::Mat rgba_mat;
cv::cvtColor(image, rgba_mat, CV_BGR2RGBA);
LiteMat lite_mat_bgr;
bool ret =
InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
ASSERT_TRUE(ret == true);
LiteMat makeborder;
ret = Pad(lite_mat_bgr, makeborder, top, bottom, left, right, PaddBorderType::PADD_BORDER_REPLICATE);
ASSERT_TRUE(ret == true);
size_t total_size = makeborder.height_ * makeborder.width_ * makeborder.channel_;
double distance = 0.0f;
for (size_t i = 0; i < total_size; i++) {
distance += pow((uint8_t)b_image.data[i] - ((uint8_t *)makeborder)[i], 2);
}
distance = sqrt(distance / total_size);
EXPECT_EQ(distance, 0.0f);
}
TEST_F(MindDataImageProcess, TestPadReflect101) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
int left = 20;
int right = 20;
int top = 20;
int bottom = 20;
cv::Mat b_image;
cv::copyMakeBorder(image, b_image, top, bottom, left, right, cv::BORDER_REFLECT_101);
cv::Mat rgba_mat;
cv::cvtColor(image, rgba_mat, CV_BGR2RGBA);
LiteMat lite_mat_bgr;
bool ret =
InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
ASSERT_TRUE(ret == true);
LiteMat makeborder;
ret = Pad(lite_mat_bgr, makeborder, top, bottom, left, right, PaddBorderType::PADD_BORDER_REFLECT_101);
ASSERT_TRUE(ret == true);
size_t total_size = makeborder.height_ * makeborder.width_ * makeborder.channel_;
double distance = 0.0f;
for (size_t i = 0; i < total_size; i++) {
distance += pow((uint8_t)b_image.data[i] - ((uint8_t *)makeborder)[i], 2);
}
distance = sqrt(distance / total_size);
EXPECT_EQ(distance, 0.0f);
}
TEST_F(MindDataImageProcess, TestGetDefaultBoxes) {
std::string benchmark = "data/dataset/testLite/default_boxes.bin";
BoxesConfig config;
config.img_shape = {300, 300};
config.num_default = {3, 6, 6, 6, 6, 6};
config.feature_size = {19, 10, 5, 3, 2, 1};
config.min_scale = 0.2;
config.max_scale = 0.95;
config.aspect_rations = {{2}, {2, 3}, {2, 3}, {2, 3}, {2, 3}, {2, 3}};
config.steps = {16, 32, 64, 100, 150, 300};
config.prior_scaling = {0.1, 0.2};
int rows = 1917;
int cols = 4;
std::vector<double> benchmark_boxes(rows * cols);
std::ifstream in(benchmark, std::ios::in | std::ios::binary);
in.read(reinterpret_cast<char *>(benchmark_boxes.data()), benchmark_boxes.size() * sizeof(double));
in.close();
std::vector<std::vector<float>> default_boxes = GetDefaultBoxes(config);
EXPECT_EQ(default_boxes.size(), rows);
EXPECT_EQ(default_boxes[0].size(), cols);
double distance = 0.0f;
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
distance += pow(default_boxes[i][j] - benchmark_boxes[i * cols + j], 2);
}
}
distance = sqrt(distance);
EXPECT_LT(distance, 1e-5);
}
TEST_F(MindDataImageProcess, TestApplyNms) {
std::vector<std::vector<float>> all_boxes = {{1, 1, 2, 2}, {3, 3, 4, 4}, {5, 5, 6, 6}, {5, 5, 6, 6}};
std::vector<float> all_scores = {0.6, 0.5, 0.4, 0.9};
std::vector<int> keep = ApplyNms(all_boxes, all_scores, 0.5, 10);
ASSERT_TRUE(keep[0] == 3);
ASSERT_TRUE(keep[1] == 0);
ASSERT_TRUE(keep[2] == 1);
}
TEST_F(MindDataImageProcess, TestAffineInput) {
LiteMat src(3, 3);
LiteMat dst;
double M[6] = {1};
EXPECT_FALSE(Affine(src, dst, M, {}, UINT8_C1(0)));
EXPECT_FALSE(Affine(src, dst, M, {3}, UINT8_C1(0)));
EXPECT_FALSE(Affine(src, dst, M, {0, 0}, UINT8_C1(0)));
}
TEST_F(MindDataImageProcess, TestAffine) {
// The input matrix
// 0 0 1 0 0
// 0 0 1 0 0
// 2 2 3 2 2
// 0 0 1 0 0
// 0 0 1 0 0
size_t rows = 5;
size_t cols = 5;
LiteMat src(rows, cols);
for (size_t i = 0; i < rows; i++) {
for (size_t j = 0; j < cols; j++) {
if (i == 2 && j == 2) {
static_cast<UINT8_C1 *>(src.data_ptr_)[i * cols + j] = 3;
} else if (i == 2) {
static_cast<UINT8_C1 *>(src.data_ptr_)[i * cols + j] = 2;
} else if (j == 2) {
static_cast<UINT8_C1 *>(src.data_ptr_)[i * cols + j] = 1;
} else {
static_cast<UINT8_C1 *>(src.data_ptr_)[i * cols + j] = 0;
}
}
}
// Expect output matrix
// 0 0 2 0 0
// 0 0 2 0 0
// 1 1 3 1 1
// 0 0 2 0 0
// 0 0 2 0 0
LiteMat expect(rows, cols);
for (size_t i = 0; i < rows; i++) {
for (size_t j = 0; j < cols; j++) {
if (i == 2 && j == 2) {
static_cast<UINT8_C1 *>(expect.data_ptr_)[i * cols + j] = 3;
} else if (i == 2) {
static_cast<UINT8_C1 *>(expect.data_ptr_)[i * cols + j] = 1;
} else if (j == 2) {
static_cast<UINT8_C1 *>(expect.data_ptr_)[i * cols + j] = 2;
} else {
static_cast<UINT8_C1 *>(expect.data_ptr_)[i * cols + j] = 0;
}
}
}
double angle = 90.0f;
cv::Point2f center(rows / 2, cols / 2);
cv::Mat rotate_matrix = cv::getRotationMatrix2D(center, angle, 1.0);
double M[6];
for (size_t i = 0; i < 6; i++) {
M[i] = rotate_matrix.at<double>(i);
}
LiteMat dst;
EXPECT_TRUE(Affine(src, dst, M, {rows, cols}, UINT8_C1(0)));
for (size_t i = 0; i < rows; i++) {
for (size_t j = 0; j < cols; j++) {
EXPECT_EQ(static_cast<UINT8_C1 *>(expect.data_ptr_)[i * cols + j].c1,
static_cast<UINT8_C1 *>(dst.data_ptr_)[i * cols + j].c1);
}
}
}
TEST_F(MindDataImageProcess, TestSubtractUint8) {
const size_t cols = 4;
// Test uint8
LiteMat src1_uint8(1, cols);
LiteMat src2_uint8(1, cols);
LiteMat expect_uint8(1, cols);
for (size_t i = 0; i < cols; i++) {
static_cast<UINT8_C1 *>(src1_uint8.data_ptr_)[i] = 3;
static_cast<UINT8_C1 *>(src2_uint8.data_ptr_)[i] = 2;
static_cast<UINT8_C1 *>(expect_uint8.data_ptr_)[i] = 1;
}
LiteMat dst_uint8;
EXPECT_TRUE(Subtract(src1_uint8, src2_uint8, &dst_uint8));
for (size_t i = 0; i < cols; i++) {
EXPECT_EQ(static_cast<UINT8_C1 *>(expect_uint8.data_ptr_)[i].c1,
static_cast<UINT8_C1 *>(dst_uint8.data_ptr_)[i].c1);
}
}
TEST_F(MindDataImageProcess, TestSubtractInt8) {
const size_t cols = 4;
// Test int8
LiteMat src1_int8(1, cols, LDataType(LDataType::INT8));
LiteMat src2_int8(1, cols, LDataType(LDataType::INT8));
LiteMat expect_int8(1, cols, LDataType(LDataType::INT8));
for (size_t i = 0; i < cols; i++) {
static_cast<INT8_C1 *>(src1_int8.data_ptr_)[i] = 2;
static_cast<INT8_C1 *>(src2_int8.data_ptr_)[i] = 3;
static_cast<INT8_C1 *>(expect_int8.data_ptr_)[i] = -1;
}
LiteMat dst_int8;
EXPECT_TRUE(Subtract(src1_int8, src2_int8, &dst_int8));
for (size_t i = 0; i < cols; i++) {
EXPECT_EQ(static_cast<INT8_C1 *>(expect_int8.data_ptr_)[i].c1, static_cast<INT8_C1 *>(dst_int8.data_ptr_)[i].c1);
}
}
TEST_F(MindDataImageProcess, TestSubtractUInt16) {
const size_t cols = 4;
// Test uint16
LiteMat src1_uint16(1, cols, LDataType(LDataType::UINT16));
LiteMat src2_uint16(1, cols, LDataType(LDataType::UINT16));
LiteMat expect_uint16(1, cols, LDataType(LDataType::UINT16));
for (size_t i = 0; i < cols; i++) {
static_cast<UINT16_C1 *>(src1_uint16.data_ptr_)[i] = 2;
static_cast<UINT16_C1 *>(src2_uint16.data_ptr_)[i] = 3;
static_cast<UINT16_C1 *>(expect_uint16.data_ptr_)[i] = 0;
}
LiteMat dst_uint16;
EXPECT_TRUE(Subtract(src1_uint16, src2_uint16, &dst_uint16));
for (size_t i = 0; i < cols; i++) {
EXPECT_EQ(static_cast<UINT16_C1 *>(expect_uint16.data_ptr_)[i].c1,
static_cast<UINT16_C1 *>(dst_uint16.data_ptr_)[i].c1);
}
}
TEST_F(MindDataImageProcess, TestSubtractInt16) {
const size_t cols = 4;
// Test int16
LiteMat src1_int16(1, cols, LDataType(LDataType::INT16));
LiteMat src2_int16(1, cols, LDataType(LDataType::INT16));
LiteMat expect_int16(1, cols, LDataType(LDataType::INT16));
for (size_t i = 0; i < cols; i++) {
static_cast<INT16_C1 *>(src1_int16.data_ptr_)[i] = 2;
static_cast<INT16_C1 *>(src2_int16.data_ptr_)[i] = 3;
static_cast<INT16_C1 *>(expect_int16.data_ptr_)[i] = -1;
}
LiteMat dst_int16;
EXPECT_TRUE(Subtract(src1_int16, src2_int16, &dst_int16));
for (size_t i = 0; i < cols; i++) {
EXPECT_EQ(static_cast<INT16_C1 *>(expect_int16.data_ptr_)[i].c1,
static_cast<INT16_C1 *>(dst_int16.data_ptr_)[i].c1);
}
}
TEST_F(MindDataImageProcess, TestSubtractUInt32) {
const size_t cols = 4;
// Test uint16
LiteMat src1_uint32(1, cols, LDataType(LDataType::UINT32));
LiteMat src2_uint32(1, cols, LDataType(LDataType::UINT32));
LiteMat expect_uint32(1, cols, LDataType(LDataType::UINT32));
for (size_t i = 0; i < cols; i++) {
static_cast<UINT32_C1 *>(src1_uint32.data_ptr_)[i] = 2;
static_cast<UINT32_C1 *>(src2_uint32.data_ptr_)[i] = 3;
static_cast<UINT32_C1 *>(expect_uint32.data_ptr_)[i] = 0;
}
LiteMat dst_uint32;
EXPECT_TRUE(Subtract(src1_uint32, src2_uint32, &dst_uint32));
for (size_t i = 0; i < cols; i++) {
EXPECT_EQ(static_cast<UINT32_C1 *>(expect_uint32.data_ptr_)[i].c1,
static_cast<UINT32_C1 *>(dst_uint32.data_ptr_)[i].c1);
}
}
TEST_F(MindDataImageProcess, TestSubtractInt32) {
const size_t cols = 4;
// Test int32
LiteMat src1_int32(1, cols, LDataType(LDataType::INT32));
LiteMat src2_int32(1, cols, LDataType(LDataType::INT32));
LiteMat expect_int32(1, cols, LDataType(LDataType::INT32));
for (size_t i = 0; i < cols; i++) {
static_cast<INT32_C1 *>(src1_int32.data_ptr_)[i] = 2;
static_cast<INT32_C1 *>(src2_int32.data_ptr_)[i] = 4;
static_cast<INT32_C1 *>(expect_int32.data_ptr_)[i] = -2;
}
LiteMat dst_int32;
EXPECT_TRUE(Subtract(src1_int32, src2_int32, &dst_int32));
for (size_t i = 0; i < cols; i++) {
EXPECT_EQ(static_cast<INT32_C1 *>(expect_int32.data_ptr_)[i].c1,
static_cast<INT32_C1 *>(dst_int32.data_ptr_)[i].c1);
}
}
TEST_F(MindDataImageProcess, TestSubtractFloat) {
const size_t cols = 4;
// Test float
LiteMat src1_float(1, cols, LDataType(LDataType::FLOAT32));
LiteMat src2_float(1, cols, LDataType(LDataType::FLOAT32));
LiteMat expect_float(1, cols, LDataType(LDataType::FLOAT32));
for (size_t i = 0; i < cols; i++) {
static_cast<FLOAT32_C1 *>(src1_float.data_ptr_)[i] = 3.4;
static_cast<FLOAT32_C1 *>(src2_float.data_ptr_)[i] = 5.7;
static_cast<FLOAT32_C1 *>(expect_float.data_ptr_)[i] = -2.3;
}
LiteMat dst_float;
EXPECT_TRUE(Subtract(src1_float, src2_float, &dst_float));
for (size_t i = 0; i < cols; i++) {
EXPECT_FLOAT_EQ(static_cast<FLOAT32_C1 *>(expect_float.data_ptr_)[i].c1,
static_cast<FLOAT32_C1 *>(dst_float.data_ptr_)[i].c1);
}
}
TEST_F(MindDataImageProcess, TestDivideUint8) {
const size_t cols = 4;
// Test uint8
LiteMat src1_uint8(1, cols);
LiteMat src2_uint8(1, cols);
LiteMat expect_uint8(1, cols);
for (size_t i = 0; i < cols; i++) {
static_cast<UINT8_C1 *>(src1_uint8.data_ptr_)[i] = 8;
static_cast<UINT8_C1 *>(src2_uint8.data_ptr_)[i] = 4;
static_cast<UINT8_C1 *>(expect_uint8.data_ptr_)[i] = 2;
}
LiteMat dst_uint8;
EXPECT_TRUE(Divide(src1_uint8, src2_uint8, &dst_uint8));
for (size_t i = 0; i < cols; i++) {
EXPECT_EQ(static_cast<UINT8_C1 *>(expect_uint8.data_ptr_)[i].c1,
static_cast<UINT8_C1 *>(dst_uint8.data_ptr_)[i].c1);
}
}
TEST_F(MindDataImageProcess, TestDivideInt8) {
const size_t cols = 4;
// Test int8
LiteMat src1_int8(1, cols, LDataType(LDataType::INT8));
LiteMat src2_int8(1, cols, LDataType(LDataType::INT8));
LiteMat expect_int8(1, cols, LDataType(LDataType::INT8));
for (size_t i = 0; i < cols; i++) {
static_cast<INT8_C1 *>(src1_int8.data_ptr_)[i] = 8;
static_cast<INT8_C1 *>(src2_int8.data_ptr_)[i] = -4;
static_cast<INT8_C1 *>(expect_int8.data_ptr_)[i] = -2;
}
LiteMat dst_int8;
EXPECT_TRUE(Divide(src1_int8, src2_int8, &dst_int8));
for (size_t i = 0; i < cols; i++) {
EXPECT_EQ(static_cast<INT8_C1 *>(expect_int8.data_ptr_)[i].c1, static_cast<INT8_C1 *>(dst_int8.data_ptr_)[i].c1);
}
}
TEST_F(MindDataImageProcess, TestDivideUInt16) {
const size_t cols = 4;
// Test uint16
LiteMat src1_uint16(1, cols, LDataType(LDataType::UINT16));
LiteMat src2_uint16(1, cols, LDataType(LDataType::UINT16));
LiteMat expect_uint16(1, cols, LDataType(LDataType::UINT16));
for (size_t i = 0; i < cols; i++) {
static_cast<UINT16_C1 *>(src1_uint16.data_ptr_)[i] = 40000;
static_cast<UINT16_C1 *>(src2_uint16.data_ptr_)[i] = 20000;
static_cast<UINT16_C1 *>(expect_uint16.data_ptr_)[i] = 2;
}
LiteMat dst_uint16;
EXPECT_TRUE(Divide(src1_uint16, src2_uint16, &dst_uint16));
for (size_t i = 0; i < cols; i++) {
EXPECT_EQ(static_cast<UINT16_C1 *>(expect_uint16.data_ptr_)[i].c1,
static_cast<UINT16_C1 *>(dst_uint16.data_ptr_)[i].c1);
}
}
TEST_F(MindDataImageProcess, TestDivideInt16) {
const size_t cols = 4;
// Test int16
LiteMat src1_int16(1, cols, LDataType(LDataType::INT16));
LiteMat src2_int16(1, cols, LDataType(LDataType::INT16));
LiteMat expect_int16(1, cols, LDataType(LDataType::INT16));
for (size_t i = 0; i < cols; i++) {
static_cast<INT16_C1 *>(src1_int16.data_ptr_)[i] = 30000;
static_cast<INT16_C1 *>(src2_int16.data_ptr_)[i] = -3;
static_cast<INT16_C1 *>(expect_int16.data_ptr_)[i] = -10000;
}
LiteMat dst_int16;
EXPECT_TRUE(Divide(src1_int16, src2_int16, &dst_int16));
for (size_t i = 0; i < cols; i++) {
EXPECT_EQ(static_cast<INT16_C1 *>(expect_int16.data_ptr_)[i].c1,
static_cast<INT16_C1 *>(dst_int16.data_ptr_)[i].c1);
}
}
TEST_F(MindDataImageProcess, TestDivideUInt32) {
const size_t cols = 4;
// Test uint16
LiteMat src1_uint32(1, cols, LDataType(LDataType::UINT32));
LiteMat src2_uint32(1, cols, LDataType(LDataType::UINT32));
LiteMat expect_uint32(1, cols, LDataType(LDataType::UINT32));
for (size_t i = 0; i < cols; i++) {
static_cast<UINT32_C1 *>(src1_uint32.data_ptr_)[i] = 4000000000;
static_cast<UINT32_C1 *>(src2_uint32.data_ptr_)[i] = 4;
static_cast<UINT32_C1 *>(expect_uint32.data_ptr_)[i] = 1000000000;
}
LiteMat dst_uint32;
EXPECT_TRUE(Divide(src1_uint32, src2_uint32, &dst_uint32));
for (size_t i = 0; i < cols; i++) {
EXPECT_EQ(static_cast<UINT32_C1 *>(expect_uint32.data_ptr_)[i].c1,
static_cast<UINT32_C1 *>(dst_uint32.data_ptr_)[i].c1);
}
}
TEST_F(MindDataImageProcess, TestDivideInt32) {
const size_t cols = 4;
// Test int32
LiteMat src1_int32(1, cols, LDataType(LDataType::INT32));
LiteMat src2_int32(1, cols, LDataType(LDataType::INT32));
LiteMat expect_int32(1, cols, LDataType(LDataType::INT32));
for (size_t i = 0; i < cols; i++) {
static_cast<INT32_C1 *>(src1_int32.data_ptr_)[i] = 2000000000;
static_cast<INT32_C1 *>(src2_int32.data_ptr_)[i] = -2;
static_cast<INT32_C1 *>(expect_int32.data_ptr_)[i] = -1000000000;
}
LiteMat dst_int32;
EXPECT_TRUE(Divide(src1_int32, src2_int32, &dst_int32));
for (size_t i = 0; i < cols; i++) {
EXPECT_EQ(static_cast<INT32_C1 *>(expect_int32.data_ptr_)[i].c1,
static_cast<INT32_C1 *>(dst_int32.data_ptr_)[i].c1);
}
}
TEST_F(MindDataImageProcess, TestDivideFloat) {
const size_t cols = 4;
// Test float
LiteMat src1_float(1, cols, LDataType(LDataType::FLOAT32));
LiteMat src2_float(1, cols, LDataType(LDataType::FLOAT32));
LiteMat expect_float(1, cols, LDataType(LDataType::FLOAT32));
for (size_t i = 0; i < cols; i++) {
static_cast<FLOAT32_C1 *>(src1_float.data_ptr_)[i] = 12.34f;
static_cast<FLOAT32_C1 *>(src2_float.data_ptr_)[i] = -2.0f;
static_cast<FLOAT32_C1 *>(expect_float.data_ptr_)[i] = -6.17f;
}
LiteMat dst_float;
EXPECT_TRUE(Divide(src1_float, src2_float, &dst_float));
for (size_t i = 0; i < cols; i++) {
EXPECT_FLOAT_EQ(static_cast<FLOAT32_C1 *>(expect_float.data_ptr_)[i].c1,
static_cast<FLOAT32_C1 *>(dst_float.data_ptr_)[i].c1);
}
}
TEST_F(MindDataImageProcess, TestMultiplyUint8) {
const size_t cols = 4;
// Test uint8
LiteMat src1_uint8(1, cols);
LiteMat src2_uint8(1, cols);
LiteMat expect_uint8(1, cols);
for (size_t i = 0; i < cols; i++) {
static_cast<UINT8_C1 *>(src1_uint8.data_ptr_)[i] = 8;
static_cast<UINT8_C1 *>(src2_uint8.data_ptr_)[i] = 4;
static_cast<UINT8_C1 *>(expect_uint8.data_ptr_)[i] = 32;
}
LiteMat dst_uint8;
EXPECT_TRUE(Multiply(src1_uint8, src2_uint8, &dst_uint8));
for (size_t i = 0; i < cols; i++) {
EXPECT_EQ(static_cast<UINT8_C1 *>(expect_uint8.data_ptr_)[i].c1,
static_cast<UINT8_C1 *>(dst_uint8.data_ptr_)[i].c1);
}
}
TEST_F(MindDataImageProcess, TestMultiplyUInt16) {
const size_t cols = 4;
// Test int16
LiteMat src1_int16(1, cols, LDataType(LDataType::UINT16));
LiteMat src2_int16(1, cols, LDataType(LDataType::UINT16));
LiteMat expect_int16(1, cols, LDataType(LDataType::UINT16));
for (size_t i = 0; i < cols; i++) {
static_cast<UINT16_C1 *>(src1_int16.data_ptr_)[i] = 60000;
static_cast<UINT16_C1 *>(src2_int16.data_ptr_)[i] = 2;
static_cast<UINT16_C1 *>(expect_int16.data_ptr_)[i] = 65535;
}
LiteMat dst_int16;
EXPECT_TRUE(Multiply(src1_int16, src2_int16, &dst_int16));
for (size_t i = 0; i < cols; i++) {
EXPECT_EQ(static_cast<UINT16_C1 *>(expect_int16.data_ptr_)[i].c1,
static_cast<UINT16_C1 *>(dst_int16.data_ptr_)[i].c1);
}
}
TEST_F(MindDataImageProcess, TestMultiplyFloat) {
const size_t cols = 4;
// Test float
LiteMat src1_float(1, cols, LDataType(LDataType::FLOAT32));
LiteMat src2_float(1, cols, LDataType(LDataType::FLOAT32));
LiteMat expect_float(1, cols, LDataType(LDataType::FLOAT32));
for (size_t i = 0; i < cols; i++) {
static_cast<FLOAT32_C1 *>(src1_float.data_ptr_)[i] = 30.0f;
static_cast<FLOAT32_C1 *>(src2_float.data_ptr_)[i] = -2.0f;
static_cast<FLOAT32_C1 *>(expect_float.data_ptr_)[i] = -60.0f;
}
LiteMat dst_float;
EXPECT_TRUE(Multiply(src1_float, src2_float, &dst_float));
for (size_t i = 0; i < cols; i++) {
EXPECT_FLOAT_EQ(static_cast<FLOAT32_C1 *>(expect_float.data_ptr_)[i].c1,
static_cast<FLOAT32_C1 *>(dst_float.data_ptr_)[i].c1);
}
}
TEST_F(MindDataImageProcess, TestExtractChannel) {
LiteMat lite_single;
LiteMat lite_mat = LiteMat(1, 4, 3, LDataType::UINT16);
EXPECT_FALSE(ExtractChannel(lite_mat, lite_single, 0));
EXPECT_TRUE(lite_single.IsEmpty());
}
TEST_F(MindDataImageProcess, testROI3C) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
cv::Mat cv_roi = cv::Mat(src_image, cv::Rect(500, 500, 3000, 1500));
cv::imwrite("./cv_roi.jpg", cv_roi);
bool ret = false;
LiteMat lite_mat_bgr;
ret = InitFromPixel(src_image.data, LPixelType::BGR, LDataType::UINT8, src_image.cols, src_image.rows, lite_mat_bgr);
EXPECT_TRUE(ret);
LiteMat lite_roi;
ret = lite_mat_bgr.GetROI(500, 500, 3000, 1500, lite_roi);
EXPECT_TRUE(ret);
LiteMat lite_roi_save(3000, 1500, lite_roi.channel_, LDataType::UINT8);
for (size_t i = 0; i < lite_roi.height_; i++) {
const unsigned char *ptr = lite_roi.ptr<unsigned char>(i);
size_t image_size = lite_roi.width_ * lite_roi.channel_ * sizeof(unsigned char);
unsigned char *dst_ptr = (unsigned char *)lite_roi_save.data_ptr_ + image_size * i;
(void)memcpy(dst_ptr, ptr, image_size);
}
cv::Mat dst_imageR(lite_roi_save.height_, lite_roi_save.width_, CV_8UC3, lite_roi_save.data_ptr_);
cv::imwrite("./lite_roi.jpg", dst_imageR);
}
TEST_F(MindDataImageProcess, testROI3CFalse) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
cv::Mat cv_roi = cv::Mat(src_image, cv::Rect(500, 500, 3000, 1500));
cv::imwrite("./cv_roi.jpg", cv_roi);
bool ret = false;
LiteMat lite_mat_bgr;
ret = InitFromPixel(src_image.data, LPixelType::BGR, LDataType::UINT8, src_image.cols, src_image.rows, lite_mat_bgr);
EXPECT_TRUE(ret);
LiteMat lite_roi;
ret = lite_mat_bgr.GetROI(500, 500, 1200, -100, lite_roi);
EXPECT_FALSE(ret);
}
TEST_F(MindDataImageProcess, testROI1C) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
cv::Mat gray_image;
cv::cvtColor(src_image, gray_image, CV_BGR2GRAY);
cv::Mat cv_roi_gray = cv::Mat(gray_image, cv::Rect(500, 500, 3000, 1500));
cv::imwrite("./cv_roi_gray.jpg", cv_roi_gray);
cv::Mat rgba_mat;
cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
bool ret = false;
LiteMat lite_mat_gray;
ret =
InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray);
EXPECT_TRUE(ret);
LiteMat lite_roi_gray;
ret = lite_mat_gray.GetROI(500, 500, 3000, 1500, lite_roi_gray);
EXPECT_TRUE(ret);
LiteMat lite_roi_gray_save(3000, 1500, lite_roi_gray.channel_, LDataType::UINT8);
for (size_t i = 0; i < lite_roi_gray.height_; i++) {
const unsigned char *ptr = lite_roi_gray.ptr<unsigned char>(i);
size_t image_size = lite_roi_gray.width_ * lite_roi_gray.channel_ * sizeof(unsigned char);
unsigned char *dst_ptr = (unsigned char *)lite_roi_gray_save.data_ptr_ + image_size * i;
(void)memcpy(dst_ptr, ptr, image_size);
}
cv::Mat dst_imageR(lite_roi_gray_save.height_, lite_roi_gray_save.width_, CV_8UC1, lite_roi_gray_save.data_ptr_);
cv::imwrite("./lite_roi.jpg", dst_imageR);
}
// warp
TEST_F(MindDataImageProcess, testWarpAffineBGR) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
cv::Point2f srcTri[3];
cv::Point2f dstTri[3];
srcTri[0] = cv::Point2f(0, 0);
srcTri[1] = cv::Point2f(src_image.cols - 1, 0);
srcTri[2] = cv::Point2f(0, src_image.rows - 1);
dstTri[0] = cv::Point2f(src_image.cols * 0.0, src_image.rows * 0.33);
dstTri[1] = cv::Point2f(src_image.cols * 0.85, src_image.rows * 0.25);
dstTri[2] = cv::Point2f(src_image.cols * 0.15, src_image.rows * 0.7);
cv::Mat warp_mat = cv::getAffineTransform(srcTri, dstTri);
;
cv::Mat warp_dstImage;
cv::warpAffine(src_image, warp_dstImage, warp_mat, warp_dstImage.size());
cv::imwrite("./warpAffine_cv_bgr.png", warp_dstImage);
bool ret = false;
LiteMat lite_mat_bgr;
ret = InitFromPixel(src_image.data, LPixelType::BGR, LDataType::UINT8, src_image.cols, src_image.rows, lite_mat_bgr);
EXPECT_TRUE(ret);
double *mat_ptr = warp_mat.ptr<double>(0);
LiteMat lite_M(3, 2, 1, mat_ptr, LDataType::DOUBLE);
LiteMat lite_warp;
std::vector<uint8_t> borderValues;
borderValues.push_back(0);
borderValues.push_back(0);
borderValues.push_back(0);
ret = WarpAffineBilinear(lite_mat_bgr, lite_warp, lite_M, lite_mat_bgr.width_, lite_mat_bgr.height_,
PADD_BORDER_CONSTANT, borderValues);
EXPECT_TRUE(ret);
cv::Mat dst_imageR(lite_warp.height_, lite_warp.width_, CV_8UC3, lite_warp.data_ptr_);
cv::imwrite("./warpAffine_lite_bgr.png", dst_imageR);
}
TEST_F(MindDataImageProcess, testWarpAffineBGRScale) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
cv::Point2f srcTri[3];
cv::Point2f dstTri[3];
srcTri[0] = cv::Point2f(10, 20);
srcTri[1] = cv::Point2f(src_image.cols - 1 - 100, 0);
srcTri[2] = cv::Point2f(0, src_image.rows - 1 - 300);
dstTri[0] = cv::Point2f(src_image.cols * 0.22, src_image.rows * 0.33);
dstTri[1] = cv::Point2f(src_image.cols * 0.87, src_image.rows * 0.75);
dstTri[2] = cv::Point2f(src_image.cols * 0.35, src_image.rows * 0.37);
cv::Mat warp_mat = cv::getAffineTransform(srcTri, dstTri);
;
cv::Mat warp_dstImage;
cv::warpAffine(src_image, warp_dstImage, warp_mat, warp_dstImage.size());
cv::imwrite("./warpAffine_cv_bgr_scale.png", warp_dstImage);
bool ret = false;
LiteMat lite_mat_bgr;
ret = InitFromPixel(src_image.data, LPixelType::BGR, LDataType::UINT8, src_image.cols, src_image.rows, lite_mat_bgr);
EXPECT_TRUE(ret);
double *mat_ptr = warp_mat.ptr<double>(0);
LiteMat lite_M(3, 2, 1, mat_ptr, LDataType::DOUBLE);
LiteMat lite_warp;
std::vector<uint8_t> borderValues;
borderValues.push_back(0);
borderValues.push_back(0);
borderValues.push_back(0);
ret = WarpAffineBilinear(lite_mat_bgr, lite_warp, lite_M, lite_mat_bgr.width_, lite_mat_bgr.height_,
PADD_BORDER_CONSTANT, borderValues);
EXPECT_TRUE(ret);
cv::Mat dst_imageR(lite_warp.height_, lite_warp.width_, CV_8UC3, lite_warp.data_ptr_);
cv::imwrite("./warpAffine_lite_bgr_scale.png", dst_imageR);
}
TEST_F(MindDataImageProcess, testWarpAffineBGRResize) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
cv::Point2f srcTri[3];
cv::Point2f dstTri[3];
srcTri[0] = cv::Point2f(10, 20);
srcTri[1] = cv::Point2f(src_image.cols - 1 - 100, 0);
srcTri[2] = cv::Point2f(0, src_image.rows - 1 - 300);
dstTri[0] = cv::Point2f(src_image.cols * 0.22, src_image.rows * 0.33);
dstTri[1] = cv::Point2f(src_image.cols * 0.87, src_image.rows * 0.75);
dstTri[2] = cv::Point2f(src_image.cols * 0.35, src_image.rows * 0.37);
cv::Mat warp_mat = cv::getAffineTransform(srcTri, dstTri);
;
cv::Mat warp_dstImage;
cv::warpAffine(src_image, warp_dstImage, warp_mat, cv::Size(src_image.cols + 200, src_image.rows - 300));
cv::imwrite("./warpAffine_cv_bgr_resize.png", warp_dstImage);
bool ret = false;
LiteMat lite_mat_bgr;
ret = InitFromPixel(src_image.data, LPixelType::BGR, LDataType::UINT8, src_image.cols, src_image.rows, lite_mat_bgr);
EXPECT_TRUE(ret);
double *mat_ptr = warp_mat.ptr<double>(0);
LiteMat lite_M(3, 2, 1, mat_ptr, LDataType::DOUBLE);
LiteMat lite_warp;
std::vector<uint8_t> borderValues;
borderValues.push_back(0);
borderValues.push_back(0);
borderValues.push_back(0);
ret = WarpAffineBilinear(lite_mat_bgr, lite_warp, lite_M, lite_mat_bgr.width_ + 200, lite_mat_bgr.height_ - 300,
PADD_BORDER_CONSTANT, borderValues);
EXPECT_TRUE(ret);
cv::Mat dst_imageR(lite_warp.height_, lite_warp.width_, CV_8UC3, lite_warp.data_ptr_);
cv::imwrite("./warpAffine_lite_bgr_resize.png", dst_imageR);
}
TEST_F(MindDataImageProcess, testWarpAffineGray) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
cv::Mat gray_image;
cv::cvtColor(src_image, gray_image, CV_BGR2GRAY);
cv::Point2f srcTri[3];
cv::Point2f dstTri[3];
srcTri[0] = cv::Point2f(0, 0);
srcTri[1] = cv::Point2f(src_image.cols - 1, 0);
srcTri[2] = cv::Point2f(0, src_image.rows - 1);
dstTri[0] = cv::Point2f(src_image.cols * 0.0, src_image.rows * 0.33);
dstTri[1] = cv::Point2f(src_image.cols * 0.85, src_image.rows * 0.25);
dstTri[2] = cv::Point2f(src_image.cols * 0.15, src_image.rows * 0.7);
cv::Mat warp_mat = cv::getAffineTransform(srcTri, dstTri);
;
cv::Mat warp_gray_dstImage;
cv::warpAffine(gray_image, warp_gray_dstImage, warp_mat, cv::Size(src_image.cols + 200, src_image.rows - 300));
cv::imwrite("./warpAffine_cv_gray.png", warp_gray_dstImage);
cv::Mat rgba_mat;
cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
bool ret = false;
LiteMat lite_mat_gray;
ret =
InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray);
EXPECT_TRUE(ret);
double *mat_ptr = warp_mat.ptr<double>(0);
LiteMat lite_M(3, 2, 1, mat_ptr, LDataType::DOUBLE);
LiteMat lite_warp;
std::vector<uint8_t> borderValues;
borderValues.push_back(0);
ret = WarpAffineBilinear(lite_mat_gray, lite_warp, lite_M, lite_mat_gray.width_ + 200, lite_mat_gray.height_ - 300,
PADD_BORDER_CONSTANT, borderValues);
EXPECT_TRUE(ret);
cv::Mat dst_imageR(lite_warp.height_, lite_warp.width_, CV_8UC1, lite_warp.data_ptr_);
cv::imwrite("./warpAffine_lite_gray.png", dst_imageR);
}
TEST_F(MindDataImageProcess, testWarpPerspectiveBGRResize) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
cv::Point2f srcQuad[4], dstQuad[4];
srcQuad[0].x = 0;
srcQuad[0].y = 0;
srcQuad[1].x = src_image.cols - 1.;
srcQuad[1].y = 0;
srcQuad[2].x = 0;
srcQuad[2].y = src_image.rows - 1;
srcQuad[3].x = src_image.cols - 1;
srcQuad[3].y = src_image.rows - 1;
dstQuad[0].x = src_image.cols * 0.05;
dstQuad[0].y = src_image.rows * 0.33;
dstQuad[1].x = src_image.cols * 0.9;
dstQuad[1].y = src_image.rows * 0.25;
dstQuad[2].x = src_image.cols * 0.2;
dstQuad[2].y = src_image.rows * 0.7;
dstQuad[3].x = src_image.cols * 0.8;
dstQuad[3].y = src_image.rows * 0.9;
cv::Mat ptran = cv::getPerspectiveTransform(srcQuad, dstQuad, cv::DECOMP_SVD);
cv::Mat warp_dstImage;
cv::warpPerspective(src_image, warp_dstImage, ptran, cv::Size(src_image.cols + 200, src_image.rows - 300));
cv::imwrite("./warpPerspective_cv_bgr.png", warp_dstImage);
bool ret = false;
LiteMat lite_mat_bgr;
ret = InitFromPixel(src_image.data, LPixelType::BGR, LDataType::UINT8, src_image.cols, src_image.rows, lite_mat_bgr);
EXPECT_TRUE(ret);
double *mat_ptr = ptran.ptr<double>(0);
LiteMat lite_M(3, 3, 1, mat_ptr, LDataType::DOUBLE);
LiteMat lite_warp;
std::vector<uint8_t> borderValues;
borderValues.push_back(0);
borderValues.push_back(0);
borderValues.push_back(0);
ret = WarpPerspectiveBilinear(lite_mat_bgr, lite_warp, lite_M, lite_mat_bgr.width_ + 200, lite_mat_bgr.height_ - 300,
PADD_BORDER_CONSTANT, borderValues);
EXPECT_TRUE(ret);
cv::Mat dst_imageR(lite_warp.height_, lite_warp.width_, CV_8UC3, lite_warp.data_ptr_);
cv::imwrite("./warpPerspective_lite_bgr.png", dst_imageR);
}
TEST_F(MindDataImageProcess, testWarpPerspectiveGrayResize) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
cv::Mat gray_image;
cv::cvtColor(src_image, gray_image, CV_BGR2GRAY);
cv::Point2f srcQuad[4], dstQuad[4];
srcQuad[0].x = 0;
srcQuad[0].y = 0;
srcQuad[1].x = src_image.cols - 1.;
srcQuad[1].y = 0;
srcQuad[2].x = 0;
srcQuad[2].y = src_image.rows - 1;
srcQuad[3].x = src_image.cols - 1;
srcQuad[3].y = src_image.rows - 1;
dstQuad[0].x = src_image.cols * 0.05;
dstQuad[0].y = src_image.rows * 0.33;
dstQuad[1].x = src_image.cols * 0.9;
dstQuad[1].y = src_image.rows * 0.25;
dstQuad[2].x = src_image.cols * 0.2;
dstQuad[2].y = src_image.rows * 0.7;
dstQuad[3].x = src_image.cols * 0.8;
dstQuad[3].y = src_image.rows * 0.9;
cv::Mat ptran = cv::getPerspectiveTransform(srcQuad, dstQuad, cv::DECOMP_SVD);
cv::Mat warp_dstImage;
cv::warpPerspective(gray_image, warp_dstImage, ptran, cv::Size(gray_image.cols + 200, gray_image.rows - 300));
cv::imwrite("./warpPerspective_cv_gray.png", warp_dstImage);
cv::Mat rgba_mat;
cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
bool ret = false;
LiteMat lite_mat_gray;
ret =
InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray);
EXPECT_TRUE(ret);
double *mat_ptr = ptran.ptr<double>(0);
LiteMat lite_M(3, 3, 1, mat_ptr, LDataType::DOUBLE);
LiteMat lite_warp;
std::vector<uint8_t> borderValues;
borderValues.push_back(0);
ret = WarpPerspectiveBilinear(lite_mat_gray, lite_warp, lite_M, lite_mat_gray.width_ + 200,
lite_mat_gray.height_ - 300, PADD_BORDER_CONSTANT, borderValues);
EXPECT_TRUE(ret);
cv::Mat dst_imageR(lite_warp.height_, lite_warp.width_, CV_8UC1, lite_warp.data_ptr_);
cv::imwrite("./warpPerspective_lite_gray.png", dst_imageR);
}
TEST_F(MindDataImageProcess, testGetRotationMatrix2D) {
std::vector<std::vector<double>> expect_matrix = {{0.250000, 0.433013, -0.116025}, {-0.433013, 0.250000, 1.933013}};
double angle = 60.0;
double scale = 0.5;
LiteMat M;
bool ret = false;
ret = GetRotationMatrix2D(1.0f, 2.0f, angle, scale, M);
EXPECT_TRUE(ret);
AccuracyComparison(expect_matrix, M);
}
TEST_F(MindDataImageProcess, testGetPerspectiveTransform) {
std::vector<std::vector<double>> expect_matrix = {
{1.272113, 3.665216, -788.484287}, {-0.394146, 3.228247, -134.009780}, {-0.001460, 0.006414, 1}};
std::vector<Point> src = {Point(165, 270), Point(835, 270), Point(360, 125), Point(615, 125)};
std::vector<Point> dst = {Point(165, 270), Point(835, 270), Point(100, 100), Point(500, 30)};
LiteMat M;
bool ret = false;
ret = GetPerspectiveTransform(src, dst, M);
EXPECT_TRUE(ret);
AccuracyComparison(expect_matrix, M);
}
TEST_F(MindDataImageProcess, testGetPerspectiveTransformFail) {
std::vector<Point> src = {Point(165, 270), Point(835, 270), Point(360, 125), Point(615, 125)};
std::vector<Point> dst = {Point(100, 100), Point(500, 30)};
LiteMat M;
bool ret = GetPerspectiveTransform(src, dst, M);
EXPECT_FALSE(ret);
std::vector<Point> src1 = {Point(360, 125), Point(615, 125)};
std::vector<Point> dst2 = {Point(165, 270), Point(835, 270), Point(100, 100), Point(500, 30)};
LiteMat M1;
bool ret1 = GetPerspectiveTransform(src, dst, M1);
EXPECT_FALSE(ret1);
}
TEST_F(MindDataImageProcess, testGetAffineTransform) {
std::vector<std::vector<double>> expect_matrix = {{0.400000, 0.066667, 16.666667}, {0.000000, 0.333333, 23.333333}};
std::vector<Point> src = {Point(50, 50), Point(200, 50), Point(50, 200)};
std::vector<Point> dst = {Point(40, 40), Point(100, 40), Point(50, 90)};
LiteMat M;
bool ret = false;
ret = GetAffineTransform(src, dst, M);
EXPECT_TRUE(ret);
AccuracyComparison(expect_matrix, M);
}
TEST_F(MindDataImageProcess, testGetAffineTransformFail) {
std::vector<Point> src = {Point(50, 50), Point(200, 50)};
std::vector<Point> dst = {Point(40, 40), Point(100, 40), Point(50, 90)};
LiteMat M;
bool ret = GetAffineTransform(src, dst, M);
EXPECT_FALSE(ret);
std::vector<Point> src1 = {Point(50, 50), Point(200, 50), Point(50, 200)};
std::vector<Point> dst1 = {Point(40, 40), Point(100, 40)};
LiteMat M1;
bool ret1 = GetAffineTransform(src1, dst1, M1);
EXPECT_FALSE(ret1);
}
TEST_F(MindDataImageProcess, TestConv2D8U) {
LiteMat lite_mat_src;
lite_mat_src.Init(3, 3, 1, LDataType::UINT8);
uint8_t *src_ptr = lite_mat_src;
for (int i = 0; i < 9; i++) {
src_ptr[i] = i % 3;
}
LiteMat kernel;
kernel.Init(3, 3, 1, LDataType::FLOAT32);
float *kernel_ptr = kernel;
for (int i = 0; i < 9; i++) {
kernel_ptr[i] = i % 2;
}
LiteMat lite_mat_dst;
bool ret = Conv2D(lite_mat_src, kernel, lite_mat_dst, LDataType::UINT8);
ASSERT_TRUE(ret == true);
std::vector<uint8_t> expected_result = {2, 4, 6, 2, 4, 6, 2, 4, 6};
size_t total_size = lite_mat_dst.height_ * lite_mat_dst.width_ * lite_mat_dst.channel_;
float distance = 0.0f;
for (size_t i = 0; i < total_size; i++) {
distance += pow(((uint8_t *)lite_mat_dst)[i] - expected_result[i], 2);
}
distance = sqrt(distance / total_size);
EXPECT_EQ(distance, 0.0f);
}
TEST_F(MindDataImageProcess, TestConv2D32F) {
LiteMat lite_mat_src;
lite_mat_src.Init(2, 2, 1, LDataType::FLOAT32);
float *src_ptr = lite_mat_src;
for (int i = 0; i < 4; i++) {
src_ptr[i] = static_cast<float>(i) / 2;
}
LiteMat kernel;
kernel.Init(2, 2, 1, LDataType::FLOAT32);
float *kernel_ptr = kernel;
for (int i = 0; i < 4; i++) {
kernel_ptr[i] = static_cast<float>(i);
}
LiteMat lite_mat_dst;
bool ret = Conv2D(lite_mat_src, kernel, lite_mat_dst, LDataType::FLOAT32);
ASSERT_TRUE(ret == true);
std::vector<float> expected_result = {2.f, 3.f, 6.f, 7.f};
size_t total_size = lite_mat_dst.height_ * lite_mat_dst.width_ * lite_mat_dst.channel_;
float distance = 0.0f;
for (size_t i = 0; i < total_size; i++) {
distance += pow(((float *)lite_mat_dst)[i] - expected_result[i], 2);
}
distance = sqrt(distance / total_size);
EXPECT_EQ(distance, 0.0f);
}
TEST_F(MindDataImageProcess, TestGaussianBlurSize35) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
cv::Mat dst_image;
cv::GaussianBlur(src_image, dst_image, cv::Size(3, 5), 3, 3);
cv::Mat rgba_mat;
cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
LiteMat lite_mat_bgr;
bool ret =
InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
ASSERT_TRUE(ret == true);
LiteMat lite_mat_dst;
ret = GaussianBlur(lite_mat_bgr, lite_mat_dst, {3, 5}, 3, 3);
ASSERT_TRUE(ret == true);
size_t total_size = lite_mat_dst.height_ * lite_mat_dst.width_ * lite_mat_dst.channel_;
double distance = 0.0f;
for (size_t i = 0; i < total_size; i++) {
distance += pow((uint8_t)dst_image.data[i] - ((uint8_t *)lite_mat_dst)[i], 2);
}
distance = sqrt(distance / total_size);
EXPECT_LE(distance, 1.0f);
}
TEST_F(MindDataImageProcess, TestGaussianBlurSize13) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
cv::Mat dst_image;
cv::GaussianBlur(src_image, dst_image, cv::Size(1, 3), 3);
cv::Mat rgba_mat;
cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
LiteMat lite_mat_bgr;
bool ret =
InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
ASSERT_TRUE(ret == true);
LiteMat lite_mat_dst;
ret = GaussianBlur(lite_mat_bgr, lite_mat_dst, {1, 3}, 3);
ASSERT_TRUE(ret == true);
size_t total_size = lite_mat_dst.height_ * lite_mat_dst.width_ * lite_mat_dst.channel_;
double distance = 0.0f;
for (size_t i = 0; i < total_size; i++) {
distance += pow((uint8_t)dst_image.data[i] - ((uint8_t *)lite_mat_dst)[i], 2);
}
distance = sqrt(distance / total_size);
EXPECT_LE(distance, 1.0f);
}
TEST_F(MindDataImageProcess, TestGaussianBlurInvalidParams) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
cv::Mat rgba_mat;
cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
LiteMat lite_mat_bgr;
bool ret =
InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
ASSERT_TRUE(ret == true);
LiteMat lite_mat_dst;
// even size
ret = GaussianBlur(lite_mat_bgr, lite_mat_dst, {3, 4}, 3);
ASSERT_TRUE(ret == false);
// ksize.size() != 2
ret = GaussianBlur(lite_mat_bgr, lite_mat_dst, {3, 4, 5}, 3);
ASSERT_TRUE(ret == false);
// size less or equal to 0
ret = GaussianBlur(lite_mat_bgr, lite_mat_dst, {0, 3}, 3);
ASSERT_TRUE(ret == false);
// sigmaX less or equal to 0
ret = GaussianBlur(lite_mat_bgr, lite_mat_dst, {3, 3}, 0);
ASSERT_TRUE(ret == false);
}
TEST_F(MindDataImageProcess, TestCannySize3) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
cv::Mat gray_image;
cv::cvtColor(src_image, gray_image, CV_BGR2GRAY);
cv::Mat dst_image;
cv::Canny(gray_image, dst_image, 100, 200, 3);
cv::Mat rgba_mat;
cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
bool ret = false;
LiteMat lite_mat_gray;
ret =
InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray);
ASSERT_TRUE(ret == true);
LiteMat lite_mat_dst;
ret = Canny(lite_mat_gray, lite_mat_dst, 100, 200, 3);
ASSERT_TRUE(ret == true);
int total_size = lite_mat_dst.height_ * lite_mat_dst.width_ * lite_mat_dst.channel_;
double distance = 0.0f;
for (int i = 0; i < total_size; i++) {
distance += pow((uint8_t)dst_image.data[i] - ((uint8_t *)lite_mat_dst)[i], 2);
}
distance = sqrt(distance / total_size);
EXPECT_EQ(distance, 0.0f);
}
TEST_F(MindDataImageProcess, TestCannySize5) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
cv::Mat gray_image;
cv::cvtColor(src_image, gray_image, CV_BGR2GRAY);
cv::Mat dst_image;
cv::Canny(gray_image, dst_image, 200, 300, 5);
cv::Mat rgba_mat;
cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
bool ret = false;
LiteMat lite_mat_gray;
ret =
InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray);
ASSERT_TRUE(ret == true);
LiteMat lite_mat_dst;
ret = Canny(lite_mat_gray, lite_mat_dst, 200, 300, 5);
ASSERT_TRUE(ret == true);
int total_size = lite_mat_dst.height_ * lite_mat_dst.width_ * lite_mat_dst.channel_;
double distance = 0.0f;
for (int i = 0; i < total_size; i++) {
distance += pow((uint8_t)dst_image.data[i] - ((uint8_t *)lite_mat_dst)[i], 2);
}
distance = sqrt(distance / total_size);
EXPECT_EQ(distance, 0.0f);
}
TEST_F(MindDataImageProcess, TestCannySize7) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
cv::Mat gray_image;
cv::cvtColor(src_image, gray_image, CV_BGR2GRAY);
cv::Mat dst_image;
cv::Canny(gray_image, dst_image, 110, 220, 7);
cv::Mat rgba_mat;
cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
bool ret = false;
LiteMat lite_mat_gray;
ret =
InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray);
ASSERT_TRUE(ret == true);
LiteMat lite_mat_dst;
ret = Canny(lite_mat_gray, lite_mat_dst, 110, 220, 7);
ASSERT_TRUE(ret == true);
int total_size = lite_mat_dst.height_ * lite_mat_dst.width_ * lite_mat_dst.channel_;
double distance = 0.0f;
for (int i = 0; i < total_size; i++) {
distance += pow((uint8_t)dst_image.data[i] - ((uint8_t *)lite_mat_dst)[i], 2);
}
distance = sqrt(distance / total_size);
EXPECT_EQ(distance, 0.0f);
}
TEST_F(MindDataImageProcess, TestCannyL2) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
cv::Mat gray_image;
cv::cvtColor(src_image, gray_image, CV_BGR2GRAY);
cv::Mat dst_image;
cv::Canny(gray_image, dst_image, 50, 150, 3, true);
cv::Mat rgba_mat;
cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
bool ret = false;
LiteMat lite_mat_gray;
ret =
InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray);
ASSERT_TRUE(ret == true);
LiteMat lite_mat_dst;
ret = Canny(lite_mat_gray, lite_mat_dst, 50, 150, 3, true);
ASSERT_TRUE(ret == true);
int total_size = lite_mat_dst.height_ * lite_mat_dst.width_ * lite_mat_dst.channel_;
double distance = 0.0f;
for (int i = 0; i < total_size; i++) {
distance += pow((uint8_t)dst_image.data[i] - ((uint8_t *)lite_mat_dst)[i], 2);
}
distance = sqrt(distance / total_size);
EXPECT_EQ(distance, 0.0f);
}
TEST_F(MindDataImageProcess, TestCannyInvalidParams) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
cv::Mat rgba_mat;
cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
bool ret = false;
LiteMat lite_mat_bgr;
ret =
InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
ASSERT_TRUE(ret == true);
// channel is not 1
LiteMat lite_mat_dst;
ret = Canny(lite_mat_bgr, lite_mat_dst, 70, 210, 3);
ASSERT_TRUE(ret == false);
LiteMat lite_mat_gray;
ret =
InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray);
ASSERT_TRUE(ret == true);
// low_thresh less than 0
ret = Canny(lite_mat_gray, lite_mat_dst, -5, 230, 3);
ASSERT_TRUE(ret == false);
// high_thresh less than low_thresh
ret = Canny(lite_mat_gray, lite_mat_dst, 250, 130, 3);
ASSERT_TRUE(ret == false);
// even size
ret = Canny(lite_mat_gray, lite_mat_dst, 60, 180, 4);
ASSERT_TRUE(ret == false);
// size less than 3 or large than 7
ret = Canny(lite_mat_gray, lite_mat_dst, 10, 190, 9);
ASSERT_TRUE(ret == false);
}
TEST_F(MindDataImageProcess, TestSobel) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
cv::Mat gray_image;
cv::cvtColor(src_image, gray_image, CV_BGR2GRAY);
cv::Mat sobel_image_x;
cv::Mat sobel_image_y;
cv::Sobel(gray_image, sobel_image_x, CV_32F, 1, 0, 3, 1, 0, cv::BORDER_REPLICATE);
cv::Sobel(gray_image, sobel_image_y, CV_32F, 0, 1, 3, 1, 0, cv::BORDER_REPLICATE);
cv::Mat sobel_cv_x, sobel_cv_y;
sobel_image_x.convertTo(sobel_cv_x, CV_8UC1);
sobel_image_y.convertTo(sobel_cv_y, CV_8UC1);
cv::Mat rgba_mat;
cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
bool ret = false;
LiteMat lite_mat_gray;
ret =
InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray);
ASSERT_TRUE(ret == true);
LiteMat lite_mat_x;
LiteMat lite_mat_y;
Sobel(lite_mat_gray, lite_mat_x, 1, 0, 3, 1, PaddBorderType::PADD_BORDER_REPLICATE);
Sobel(lite_mat_gray, lite_mat_y, 0, 1, 3, 1, PaddBorderType::PADD_BORDER_REPLICATE);
ASSERT_TRUE(ret == true);
cv::Mat dst_imageX(lite_mat_x.height_, lite_mat_x.width_, CV_32FC1, lite_mat_x.data_ptr_);
cv::Mat dst_imageY(lite_mat_y.height_, lite_mat_y.width_, CV_32FC1, lite_mat_y.data_ptr_);
cv::Mat sobel_ms_x, sobel_ms_y;
dst_imageX.convertTo(sobel_ms_x, CV_8UC1);
dst_imageY.convertTo(sobel_ms_y, CV_8UC1);
size_t total_size = lite_mat_x.height_ * lite_mat_x.width_ * lite_mat_x.channel_;
float distance_x = 0.0f, distance_y = 0.0f;
for (int i = 0; i < total_size; i++) {
distance_x += pow((uint8_t)sobel_cv_x.data[i] - (uint8_t)sobel_ms_x.data[i], 2);
distance_y += pow((uint8_t)sobel_cv_y.data[i] - (uint8_t)sobel_ms_y.data[i], 2);
}
distance_x = sqrt(distance_x / total_size);
distance_y = sqrt(distance_y / total_size);
EXPECT_EQ(distance_x, 0.0f);
EXPECT_EQ(distance_y, 0.0f);
}
TEST_F(MindDataImageProcess, TestSobelFlag) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
cv::Mat gray_image;
cv::cvtColor(src_image, gray_image, CV_BGR2GRAY);
cv::Mat sobel_image_x;
cv::Sobel(gray_image, sobel_image_x, CV_32F, 3, 1, 5, 1, 0, cv::BORDER_REPLICATE);
cv::Mat sobel_cv_x;
sobel_image_x.convertTo(sobel_cv_x, CV_8UC1);
cv::Mat rgba_mat;
cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
bool ret = false;
LiteMat lite_mat_gray;
ret =
InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray);
ASSERT_TRUE(ret == true);
LiteMat lite_mat_x;
Sobel(lite_mat_gray, lite_mat_x, 3, 1, 5, 1, PaddBorderType::PADD_BORDER_REPLICATE);
ASSERT_TRUE(ret == true);
cv::Mat dst_imageX(lite_mat_x.height_, lite_mat_x.width_, CV_32FC1, lite_mat_x.data_ptr_);
cv::Mat sobel_ms_x;
dst_imageX.convertTo(sobel_ms_x, CV_8UC1);
size_t total_size = lite_mat_x.height_ * lite_mat_x.width_ * lite_mat_x.channel_;
float distance_x = 0.0f;
for (int i = 0; i < total_size; i++) {
distance_x += pow((uint8_t)sobel_cv_x.data[i] - (uint8_t)sobel_ms_x.data[i], 2);
}
distance_x = sqrt(distance_x / total_size);
EXPECT_EQ(distance_x, 0.0f);
}
TEST_F(MindDataImageProcess, testConvertRgbToGray) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
cv::Mat rgb_mat;
cv::Mat rgb_mat1;
cv::cvtColor(image, rgb_mat, CV_BGR2GRAY);
cv::imwrite("./opencv_image.jpg", rgb_mat);
cv::cvtColor(image, rgb_mat1, CV_BGR2RGB);
LiteMat lite_mat_rgb;
lite_mat_rgb.Init(rgb_mat1.cols, rgb_mat1.rows, rgb_mat1.channels(), rgb_mat1.data, LDataType::UINT8);
LiteMat lite_mat_gray;
bool ret = ConvertRgbToGray(lite_mat_rgb, LDataType::UINT8, image.cols, image.rows, lite_mat_gray);
ASSERT_TRUE(ret == true);
cv::Mat dst_image(lite_mat_gray.height_, lite_mat_gray.width_, CV_8UC1, lite_mat_gray.data_ptr_);
cv::imwrite("./mindspore_image.jpg", dst_image);
CompareMat(rgb_mat, lite_mat_gray);
}
TEST_F(MindDataImageProcess, testConvertRgbToGrayFail) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
cv::Mat rgb_mat;
cv::Mat rgb_mat1;
cv::cvtColor(image, rgb_mat, CV_BGR2GRAY);
cv::imwrite("./opencv_image.jpg", rgb_mat);
cv::cvtColor(image, rgb_mat1, CV_BGR2RGB);
// The width and height of the output image is different from the original image.
LiteMat lite_mat_rgb;
lite_mat_rgb.Init(rgb_mat1.cols, rgb_mat1.rows, rgb_mat1.channels(), rgb_mat1.data, LDataType::UINT8);
LiteMat lite_mat_gray;
bool ret = ConvertRgbToGray(lite_mat_rgb, LDataType::UINT8, 1000, 1000, lite_mat_gray);
ASSERT_TRUE(ret == false);
// The input lite_mat_rgb object is null.
LiteMat lite_mat_rgb1;
LiteMat lite_mat_gray1;
bool ret1 = ConvertRgbToGray(lite_mat_rgb1, LDataType::UINT8, image.cols, image.rows, lite_mat_gray1);
ASSERT_TRUE(ret1 == false);
// The channel of output image object is not 1.
LiteMat lite_mat_rgb2;
lite_mat_rgb2.Init(rgb_mat1.cols, rgb_mat1.rows, rgb_mat1.channels(), rgb_mat1.data, LDataType::UINT8);
LiteMat lite_mat_gray2;
lite_mat_gray2.Init(rgb_mat1.cols, rgb_mat1.rows, rgb_mat1.channels(), rgb_mat1.data, LDataType::UINT8);
bool ret2 = ConvertRgbToGray(lite_mat_rgb2, LDataType::UINT8, image.cols, image.rows, lite_mat_gray2);
ASSERT_TRUE(ret2 == false);
}
TEST_F(MindDataImageProcess, testResizePreserveARWithFillerv) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
LiteMat lite_mat_rgb;
lite_mat_rgb.Init(image.cols, image.rows, image.channels(), image.data, LDataType::UINT8);
LiteMat lite_mat_resize;
float ratioShiftWShiftH[3] = {0};
float invM[2][3] = {{0, 0, 0}, {0, 0, 0}};
int h = 1000;
int w = 1000;
bool ret = ResizePreserveARWithFiller(lite_mat_rgb, lite_mat_resize, h, w, &ratioShiftWShiftH, &invM, 0);
ASSERT_TRUE(ret == true);
cv::Mat dst_image(lite_mat_resize.height_, lite_mat_resize.width_, CV_32FC3, lite_mat_resize.data_ptr_);
cv::imwrite("./mindspore_image.jpg", dst_image);
}
TEST_F(MindDataImageProcess, testResizePreserveARWithFillervFail) {
std::string filename = "data/dataset/apple.jpg";
cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
// The input lite_mat_rgb object is null.
LiteMat lite_mat_rgb;
LiteMat lite_mat_resize;
float ratioShiftWShiftH[3] = {0};
float invM[2][3] = {{0, 0, 0}, {0, 0, 0}};
int h = 1000;
int w = 1000;
bool ret = ResizePreserveARWithFiller(lite_mat_rgb, lite_mat_resize, h, w, &ratioShiftWShiftH, &invM, 0);
ASSERT_TRUE(ret == false);
// The channel of input lite_mat_rgb object is not 3.
LiteMat lite_mat_rgb1;
lite_mat_rgb1.Init(image.cols, image.rows, 1, image.data, LDataType::UINT8);
LiteMat lite_mat_resize1;
float ratioShiftWShiftH1[3] = {0};
float invM1[2][3] = {{0, 0, 0}, {0, 0, 0}};
int h1 = 1000;
int w1 = 1000;
bool ret1 = ResizePreserveARWithFiller(lite_mat_rgb1, lite_mat_resize1, h1, w1, &ratioShiftWShiftH1, &invM1, 0);
ASSERT_TRUE(ret1 == false);
// The ratioShiftWShiftH2 and invM2 is null.
LiteMat lite_mat_rgb2;
lite_mat_rgb2.Init(image.cols, image.rows, image.channels(), image.data, LDataType::UINT8);
LiteMat lite_mat_resize2;
int h2 = 1000;
int w2 = 1000;
bool ret2 = ResizePreserveARWithFiller(lite_mat_rgb2, lite_mat_resize2, h2, w2, nullptr, nullptr, 0);
ASSERT_TRUE(ret2 == false);
// The width and height of the output image is less than or equal to 0.
LiteMat lite_mat_rgb3;
lite_mat_rgb3.Init(image.cols, image.rows, image.channels(), image.data, LDataType::UINT8);
LiteMat lite_mat_resize3;
float ratioShiftWShiftH3[3] = {0};
float invM3[2][3] = {{0, 0, 0}, {0, 0, 0}};
int h3 = -1000;
int w3 = 1000;
bool ret3 = ResizePreserveARWithFiller(lite_mat_rgb3, lite_mat_resize3, h3, w3, &ratioShiftWShiftH3, &invM3, 0);
ASSERT_TRUE(ret3 == false);
}