You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/ut/cpp/ops/test_ops_topk.cc

85 lines
2.8 KiB

/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <vector>
#include <memory>
#include "common/common_test.h"
#include "ops/topk.h"
#include "ir/dtype/type.h"
#include "ir/value.h"
#include "abstract/dshape.h"
#include "utils/tensor_construct_utils.h"
namespace mindspore {
namespace ops {
class TestTopK : public UT::Common {
public:
TestTopK() {}
void SetUp() {}
void TearDown() {}
};
TEST_F(TestTopK, test_topk) {
auto topk = std::make_shared<TopK>();
bool sorted = true;
topk->Init(sorted);
EXPECT_EQ(topk->get_sorted(), true);
auto tensor_x = std::make_shared<tensor::Tensor>(kNumberTypeFloat16, std::vector<int64_t>{5});
MS_EXCEPTION_IF_NULL(tensor_x);
auto tensor_x_data = reinterpret_cast<int *>(tensor_x->data_c());
*tensor_x_data = 1;
tensor_x_data++;
*tensor_x_data = 2;
tensor_x_data++;
*tensor_x_data = 3;
tensor_x_data++;
*tensor_x_data = 4;
tensor_x_data++;
*tensor_x_data = 5;
tensor_x_data++;
auto k = MakeValue(3);
MS_EXCEPTION_IF_NULL(k);
auto abstract = topk->Infer({tensor_x->ToAbstract(), k->ToAbstract()});
MS_EXCEPTION_IF_NULL(abstract);
EXPECT_EQ(abstract->isa<abstract::AbstractTuple>(), true);
auto shape_ptr = abstract->BuildShape();
MS_EXCEPTION_IF_NULL(shape_ptr);
EXPECT_EQ(shape_ptr->isa<abstract::TupleShape>(), true);
auto shape = shape_ptr->cast<abstract::TupleShapePtr>();
MS_EXCEPTION_IF_NULL(shape);
auto shape_vec = shape->shape();
EXPECT_EQ(shape_vec.size(), 2);
auto shape1 = shape_vec[0]->cast<abstract::ShapePtr>()->shape();
EXPECT_EQ(shape1.size(), 1);
EXPECT_EQ(shape1[0], 3);
auto shape2 = shape_vec[1]->cast<abstract::ShapePtr>()->shape();
EXPECT_EQ(shape2.size(), 1);
EXPECT_EQ(shape2[0], 3);
auto type_ptr = abstract->BuildType();
MS_EXCEPTION_IF_NULL(type_ptr);
auto type = type_ptr->cast<TuplePtr>();
auto type_vec = type->elements();
EXPECT_EQ(type_vec.size(), 2);
MS_EXCEPTION_IF_NULL(type_vec[0]);
auto data_type1 = type_vec[0]->cast<TensorTypePtr>()->element();
MS_EXCEPTION_IF_NULL(data_type1);
EXPECT_EQ(data_type1->type_id(), kNumberTypeFloat16);
auto data_type2 = type_vec[1]->cast<TensorTypePtr>()->element();
MS_EXCEPTION_IF_NULL(data_type2);
EXPECT_EQ(data_type2->type_id(), kNumberTypeInt32);
}
} // namespace ops
} // namespace mindspore