You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							91 lines
						
					
					
						
							3.5 KiB
						
					
					
				
			
		
		
	
	
							91 lines
						
					
					
						
							3.5 KiB
						
					
					
				# Copyright 2020 Huawei Technologies Co., Ltd
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
# http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
# ============================================================================
 | 
						|
"""learning rate generator"""
 | 
						|
import math
 | 
						|
import numpy as np
 | 
						|
 | 
						|
 | 
						|
def get_lr(global_step, lr_init, lr_end, lr_max, warmup_epochs, total_epochs, steps_per_epoch, lr_decay_mode):
 | 
						|
    """
 | 
						|
    generate learning rate array
 | 
						|
 | 
						|
    Args:
 | 
						|
       global_step(int): total steps of the training
 | 
						|
       lr_init(float): init learning rate
 | 
						|
       lr_end(float): end learning rate
 | 
						|
       lr_max(float): max learning rate
 | 
						|
       warmup_epochs(int): number of warmup epochs
 | 
						|
       total_epochs(int): total epoch of training
 | 
						|
       steps_per_epoch(int): steps of one epoch
 | 
						|
       lr_decay_mode(string): learning rate decay mode, including steps, poly, cosine or default
 | 
						|
 | 
						|
    Returns:
 | 
						|
       np.array, learning rate array
 | 
						|
    """
 | 
						|
    lr_each_step = []
 | 
						|
    total_steps = steps_per_epoch * total_epochs
 | 
						|
    warmup_steps = steps_per_epoch * warmup_epochs
 | 
						|
    if lr_decay_mode == 'steps':
 | 
						|
        decay_epoch_index = [0.3 * total_steps, 0.6 * total_steps, 0.8 * total_steps]
 | 
						|
        for i in range(total_steps):
 | 
						|
            if i < decay_epoch_index[0]:
 | 
						|
                lr = lr_max
 | 
						|
            elif i < decay_epoch_index[1]:
 | 
						|
                lr = lr_max * 0.1
 | 
						|
            elif i < decay_epoch_index[2]:
 | 
						|
                lr = lr_max * 0.01
 | 
						|
            else:
 | 
						|
                lr = lr_max * 0.001
 | 
						|
            lr_each_step.append(lr)
 | 
						|
    elif lr_decay_mode == 'poly':
 | 
						|
        if warmup_steps != 0:
 | 
						|
            inc_each_step = (float(lr_max) - float(lr_init)) / float(warmup_steps)
 | 
						|
        else:
 | 
						|
            inc_each_step = 0
 | 
						|
        for i in range(total_steps):
 | 
						|
            if i < warmup_steps:
 | 
						|
                lr = float(lr_init) + inc_each_step * float(i)
 | 
						|
            else:
 | 
						|
                base = (1.0 - (float(i) - float(warmup_steps)) / (float(total_steps) - float(warmup_steps)))
 | 
						|
                lr = float(lr_max) * base * base
 | 
						|
                if lr < 0.0:
 | 
						|
                    lr = 0.0
 | 
						|
            lr_each_step.append(lr)
 | 
						|
    elif lr_decay_mode == 'cosine':
 | 
						|
        decay_steps = total_steps - warmup_steps
 | 
						|
        for i in range(total_steps):
 | 
						|
            if i < warmup_steps:
 | 
						|
                lr_inc = (float(lr_max) - float(lr_init)) / float(warmup_steps)
 | 
						|
                lr = float(lr_init) + lr_inc * (i + 1)
 | 
						|
            else:
 | 
						|
                linear_decay = (total_steps - i) / decay_steps
 | 
						|
                cosine_decay = 0.5 * (1 + math.cos(math.pi * 2 * 0.47 * i / decay_steps))
 | 
						|
                decayed = linear_decay * cosine_decay + 0.00001
 | 
						|
                lr = lr_max * decayed
 | 
						|
            lr_each_step.append(lr)
 | 
						|
    else:
 | 
						|
        for i in range(total_steps):
 | 
						|
            if i < warmup_steps:
 | 
						|
                lr = lr_init + (lr_max - lr_init) * i / warmup_steps
 | 
						|
            else:
 | 
						|
                lr = lr_max - (lr_max - lr_end) * (i - warmup_steps) / (total_steps - warmup_steps)
 | 
						|
            lr_each_step.append(lr)
 | 
						|
 | 
						|
    current_step = global_step
 | 
						|
    lr_each_step = np.array(lr_each_step).astype(np.float32)
 | 
						|
    learning_rate = lr_each_step[current_step:]
 | 
						|
 | 
						|
    return learning_rate
 |