You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/gpu/test_relu_v2.py

143 lines
4.8 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
import mindspore.ops.operations._grad_ops as G
class ReluNet(nn.Cell):
def __init__(self):
super(ReluNet, self).__init__()
self.relu = P.ReLU()
self.relu_grad = G.ReluGrad()
def construct(self, x, dy):
y = self.relu(x)
dx = self.relu_grad(dy, y)
return y, dx
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_ReluV2():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=True)
x = Tensor(np.array([[[[-1, 1, 10],
[1, -1, 1],
[10, 1, -1]]]]).astype(np.float32))
dy = Tensor(np.array([[[[1, 0, 3],
[0, 1, 0],
[2, 1, 1]]]]).astype(np.float32))
expect_y = np.array([[[[0, 1, 10,],
[1, 0, 1,],
[10, 1, 0.]]]]).astype(np.float32)
expect_dx = np.array([[[[0, 0, 3],
[0, 0, 0],
[2, 1, 0]]]]).astype(np.float32)
net = ReluNet()
y, dx = net(Tensor(x), Tensor(dy))
assert np.allclose(y.asnumpy(), expect_y)
assert np.allclose(dx.asnumpy(), expect_dx)
class AddReluNet(nn.Cell):
def __init__(self):
super(AddReluNet, self).__init__()
self.add = P.Add()
self.relu = P.ReLU()
self.relu_grad = G.ReluGrad()
def construct(self, x1, x2, dy):
y = self.add(x1, x2)
y = self.relu(y)
dx = self.relu_grad(dy, y)
return y, dx
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_AddRelu():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=True)
x1 = Tensor(np.array([[[[-1, 1, 10],
[1, -1, 1],
[10, 1, -1]]]]).astype(np.float32))
x2 = Tensor(np.array([[[[-1, 1, 10],
[1, -1, 1],
[10, 1, -1]]]]).astype(np.float32))
dy = Tensor(np.array([[[[1, 0, 3],
[0, 1, 0],
[2, 1, 1]]]]).astype(np.float32))
expect_y = np.array([[[[0, 2, 20],
[2, 0, 2],
[20, 2, 0]]]]).astype(np.float32)
expect_dx = np.array([[[[0, 0, 3],
[0, 0, 0],
[2, 1, 0]]]]).astype(np.float32)
net = AddReluNet()
y, dx1 = net(Tensor(x1), Tensor(x2), Tensor(dy))
assert np.allclose(y.asnumpy(), expect_y)
assert np.allclose(dx1.asnumpy(), expect_dx)
class AddReluGradNet(nn.Cell):
def __init__(self):
super(AddReluGradNet, self).__init__()
self.add = P.Add()
self.relu = P.ReLU()
self.relu_grad = G.ReluGrad()
def construct(self, x, dy1, dy2):
y = self.relu(x)
dy = self.add(dy1, dy2)
dx = self.relu_grad(dy, y)
return y, dx
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_AddReluGrad():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=True)
x = Tensor(np.array([[[[-1, 1, 10],
[1, -1, 1],
[10, 1, -1]]]]).astype(np.float32))
dy1 = Tensor(np.array([[[[1, 0, 3],
[0, 1, 0],
[2, 1, 1]]]]).astype(np.float32))
dy2 = Tensor(np.array([[[[1, 0, 3],
[0, 1, 0],
[2, 1, 1]]]]).astype(np.float32))
expect_y = np.array([[[[0, 1, 10,],
[1, 0, 1,],
[10, 1, 0.]]]]).astype(np.float32)
expect_dx = np.array([[[[0, 0, 6],
[0, 0, 0],
[4, 2, 0]]]]).astype(np.float32)
net = AddReluGradNet()
y, dx1 = net(Tensor(x), Tensor(dy1), Tensor(dy2))
assert np.allclose(y.asnumpy(), expect_y)
assert np.allclose(dx1.asnumpy(), expect_dx)