You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/tests/st/ops/gpu/test_scatter_add_op.py

339 lines
15 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor, Parameter
from mindspore.ops import operations as P
from mindspore.ops.operations import _inner_ops as inner
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
# all cases tested against dchip
class TestScatterAddNet(nn.Cell):
def __init__(self, lock, inputx, indices, updates):
super(TestScatterAddNet, self).__init__()
self.scatter_add = P.ScatterAdd(use_locking=lock)
self.inputx = Parameter(inputx, name="inputx")
self.indices = Parameter(indices, name="indices")
self.updates = Parameter(updates, name="updates")
def construct(self):
out = self.scatter_add(self.inputx, self.indices, self.updates)
return out
def scatter_add_net(inputx, indices, updates):
lock = True
net = TestScatterAddNet(lock, inputx, indices, updates)
return net()
def scatter_add_use_locking_false_net(inputx, indices, updates):
lock = False
net = TestScatterAddNet(lock, inputx, indices, updates)
return net()
class TestScatterAddDynamicNet(nn.Cell):
def __init__(self, inputx, indices, updates):
super(TestScatterAddDynamicNet, self).__init__()
self.scatter_add = P.ScatterAdd()
self.test_dynamic = inner.GpuConvertToDynamicShape()
self.inputx = Parameter(inputx, name="inputx")
self.indices = Parameter(indices, name="indices")
self.updates = Parameter(updates, name="updates")
def construct(self):
indices = self.test_dynamic(self.indices)
updates = self.test_dynamic(self.updates)
out = self.scatter_add(self.inputx, indices, updates)
return out
def scatter_add_d_net(inputx, indices, updates):
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
net = TestScatterAddDynamicNet(inputx, indices, updates)
return net()
class TestScatterAddDynamicNet2(nn.Cell):
def __init__(self, inputx):
super(TestScatterAddDynamicNet2, self).__init__()
self.scatter_add = P.ScatterAdd()
self.test_dynamic = inner.GpuConvertToDynamicShape()
self.inputx = Parameter(inputx, name="inputx")
def construct(self, indices, updates):
indices = self.test_dynamic(indices)
updates = self.test_dynamic(updates)
out = self.scatter_add(self.inputx, indices, updates)
return out
def scatter_add_d2_net(inputx, indices_1, updates_1,
indices_2, updates_2):
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
net = TestScatterAddDynamicNet2(inputx)
out1 = net(indices_1, updates_1)
out2 = net(indices_2, updates_2)
return (out1, out2)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_scatter_add_small_float32():
inputx = Tensor(np.zeros((2, 3)).astype(np.float32))
indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32))
updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32))
output = scatter_add_net(inputx, indices, updates)
expected = np.array([[6., 8., 10.],
[12., 14., 16.]])
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_scatter_add_input_updated():
inputx = Tensor(np.zeros((2, 3)).astype(np.float32))
indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32))
updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32))
lock = True
net = TestScatterAddNet(lock, inputx, indices, updates)
net()
expected = np.array([[6., 8., 10.],
[12., 14., 16.]])
np.testing.assert_array_almost_equal(net.inputx.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_scatter_add_large_shape_float32():
inputx = Tensor(np.ones((4, 2, 3, 4)).astype(np.float32))
indices = Tensor(np.array([[0, 2], [3, 1]]).astype(np.int32))
updates = Tensor(np.arange(96).reshape((2, 2, 2, 3, 4)).astype(np.float32))
output = scatter_add_net(inputx, indices, updates)
expected = np.array([[[[1., 2., 3., 4.],
[5., 6., 7., 8.],
[9., 10., 11., 12.]],
[[13., 14., 15., 16.],
[17., 18., 19., 20.],
[21., 22., 23., 24.]]],
[[[73., 74., 75., 76.],
[77., 78., 79., 80.],
[81., 82., 83., 84.]],
[[85., 86., 87., 88.],
[89., 90., 91., 92.],
[93., 94., 95., 96.]]],
[[[25., 26., 27., 28.],
[29., 30., 31., 32.],
[33., 34., 35., 36.]],
[[37., 38., 39., 40.],
[41., 42., 43., 44.],
[45., 46., 47., 48.]]],
[[[49., 50., 51., 52.],
[53., 54., 55., 56.],
[57., 58., 59., 60.]],
[[61., 62., 63., 64.],
[65., 66., 67., 68.],
[69., 70., 71., 72.]]]])
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_scatter_add_small_float32_use_locking_false():
inputx = Tensor(np.zeros((2, 3)).astype(np.float32))
indices = Tensor(np.array([1, 0]).astype(np.int32))
updates = Tensor(np.arange(6).reshape((2, 3)).astype(np.float32))
output = scatter_add_use_locking_false_net(inputx, indices, updates)
expected = np.array([[3., 4., 5.],
[0., 1., 2.]])
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_scatter_add_input_less_than_1_float32():
inputx = Tensor(np.array([[0.214141, 0.415151, 0.51516],
[0.876542, 0.451611, 0.55112],
[0.111244, 0.633333, 0.34444]]).astype(np.float32))
indices = Tensor(np.array([[[1, 0, 2],
[2, 2, 0]],
[[1, 0, 1],
[2, 1, 2]]]).astype(np.int32))
updates = Tensor(np.arange(34, 70).reshape((2, 2, 3, 3)).astype(np.float32))
output = scatter_add_net(inputx, indices, updates)
expected = np.array([[141.21414, 144.41515, 147.51517],
[208.87654, 212.45161, 216.55112],
[257.11124, 262.63333, 267.34442]], dtype=np.float32)
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_scatter_add_float16():
inputx = Tensor(np.zeros((2, 3)).astype(np.float16))
indices = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32))
updates = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float16))
output = scatter_add_net(inputx, indices, updates)
expected = np.array([[6., 8., 10.],
[12., 14., 16.]])
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_scatter_add_large_float16():
inputx = Tensor(np.zeros((2, 3, 4)).astype(np.float16))
indices = Tensor(np.array([[0, 0], [1, 1]]).astype(np.int32))
updates = Tensor(np.arange(63, 111).reshape((2, 2, 3, 4)).astype(np.float16))
output = scatter_add_net(inputx, indices, updates)
expected = np.array([[[138., 140., 142., 144.],
[146., 148., 150., 152.],
[154., 156., 158., 160.]],
[[186., 188., 190., 192.],
[194., 196., 198., 200.],
[202., 204., 206., 208.]]])
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_scatter_add_disordered_float16():
inputx = Tensor(np.flip(np.arange(34, 46).reshape(3, 4).astype(np.float16)))
indices = Tensor(np.array([[[0, 1, 2],
[2, 1, 0]],
[[0, 0, 0],
[2, 2, 2]]]).astype(np.int32))
updates = Tensor(np.arange(63, 111).reshape((2, 2, 3, 4)).astype(np.float16))
output = scatter_add_net(inputx, indices, updates)
expected = np.array([[464., 468., 472., 476.],
[187., 188., 189., 190.],
[492., 496., 500., 504.]])
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_scatter_add_large_int32():
inputx = Tensor(np.zeros((2, 3, 4)).astype(np.int32))
indices = Tensor(np.array([[0, 0], [1, 1]]).astype(np.int32))
updates = Tensor(np.arange(63, 111).reshape((2, 2, 3, 4)).astype(np.int32))
output = scatter_add_net(inputx, indices, updates)
expected = np.array([[[138., 140., 142., 144.],
[146., 148., 150., 152.],
[154., 156., 158., 160.]],
[[186., 188., 190., 192.],
[194., 196., 198., 200.],
[202., 204., 206., 208.]]]).astype(np.int32)
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_scatter_add_disordered_int32():
inputx = Tensor(np.flip(np.arange(34, 46).reshape(3, 4).astype(np.int32)))
indices = Tensor(np.array([[[0, 1, 2],
[2, 1, 0]],
[[0, 0, 0],
[2, 2, 2]]]).astype(np.int32))
updates = Tensor(np.arange(63, 111).reshape((2, 2, 3, 4)).astype(np.int32))
output = scatter_add_net(inputx, indices, updates)
expected = np.array([[464., 468., 472., 476.],
[187., 188., 189., 190.],
[492., 496., 500., 504.]]).astype(np.int32)
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_scatter_add_disordered_dynamic_int32():
inputx = Tensor(np.flip(np.arange(34, 46).reshape(3, 4).astype(np.int32)))
indices = Tensor(np.array([[[0, 1, 2],
[2, 1, 0]],
[[0, 0, 0],
[2, 2, 2]]]).astype(np.int32))
updates = Tensor(np.arange(63, 111).reshape((2, 2, 3, 4)).astype(np.int32))
output = scatter_add_d_net(inputx, indices, updates)
expected = np.array([[464., 468., 472., 476.],
[187., 188., 189., 190.],
[492., 496., 500., 504.]]).astype(np.int32)
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_scatter_add_disordered_dynamic_int8():
inputx = Tensor(np.flip(np.arange(34, 46).reshape(3, 4).astype(np.int8)))
indices = Tensor(np.array([[[0, 1, 2],
[2, 1, 0]],
[[0, 0, 0],
[2, 2, 2]]]).astype(np.int32))
updates = Tensor(np.arange(63, 111).reshape((2, 2, 3, 4)).astype(np.int8))
output = scatter_add_d_net(inputx, indices, updates)
expected = np.array([[464., 468., 472., 476.],
[187., 188., 189., 190.],
[492., 496., 500., 504.]]).astype(np.int8)
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_scatter_add_disordered_dynamic_uint8():
inputx = Tensor(np.flip(np.arange(34, 46).reshape(3, 4).astype(np.uint8)))
indices = Tensor(np.array([[[0, 1, 2],
[2, 1, 0]],
[[0, 0, 0],
[2, 2, 2]]]).astype(np.int32))
updates = Tensor(np.arange(63, 111).reshape((2, 2, 3, 4)).astype(np.uint8))
output = scatter_add_d_net(inputx, indices, updates)
expected = np.array([[464., 468., 472., 476.],
[187., 188., 189., 190.],
[492., 496., 500., 504.]]).astype(np.uint8)
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_scatter_add_input_less_than_1_dynamic_float32():
inputx = Tensor(np.array([[0.214141, 0.415151, 0.51516],
[0.876542, 0.451611, 0.55112],
[0.111244, 0.633333, 0.34444]]).astype(np.float32))
indices = Tensor(np.array([[[1, 0, 2],
[2, 2, 0]],
[[1, 0, 1],
[2, 1, 2]]]).astype(np.int32))
updates = Tensor(np.arange(34, 70).reshape((2, 2, 3, 3)).astype(np.float32))
output = scatter_add_d_net(inputx, indices, updates)
expected = np.array([[141.21414, 144.41515, 147.51517],
[208.87654, 212.45161, 216.55112],
[257.11124, 262.63333, 267.34442]], dtype=np.float32)
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_scatter_add_dynamic_two_inputs():
inputx = Tensor(np.zeros((2, 3)).astype(np.float32))
indices_1 = Tensor(np.array([[0, 1], [0, 1]]).astype(np.int32))
updates_1 = Tensor(np.arange(12).reshape((2, 2, 3)).astype(np.float32))
indices_2 = Tensor(np.array([[0, 0], [1, 1], [1, 0]]).astype(np.int32))
updates_2 = Tensor(np.flip(np.arange(18).reshape((3, 2, 3)).astype(np.float32)))
output_1, output_2 = scatter_add_d2_net(inputx, indices_1, updates_1,
indices_2, updates_2)
expected_1 = np.array([[6., 8., 10.],
[12., 14., 16.]])
expected_2 = np.array([[39., 38., 37.],
[36., 35., 34.]])
np.testing.assert_array_almost_equal(output_1.asnumpy(), expected_1)
np.testing.assert_array_almost_equal(output_2.asnumpy(), expected_2)