You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/ssd/scripts/run_distribute_train.sh

81 lines
2.6 KiB

#!/bin/bash
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
echo "=============================================================================================================="
echo "Please run the scipt as: "
echo "sh run_distribute_train.sh DEVICE_NUM EPOCH_SIZE LR DATASET MINDSPORE_HCCL_CONFIG_PATH PRE_TRAINED PRE_TRAINED_EPOCH_SIZE"
echo "for example: sh run_distribute_train.sh 8 500 0.2 coco /data/hccl.json /opt/ssd-300.ckpt(optional) 200(optional)"
echo "It is better to use absolute path."
echo "================================================================================================================="
if [ $# != 5 ] && [ $# != 7 ]
then
echo "Usage: sh run_distribute_train.sh [DEVICE_NUM] [EPOCH_SIZE] [LR] [DATASET] \
[MINDSPORE_HCCL_CONFIG_PATH] [PRE_TRAINED](optional) [PRE_TRAINED_EPOCH_SIZE](optional)"
exit 1
fi
# Before start distribute train, first create mindrecord files.
python train.py --only_create_dataset=1
echo "After running the scipt, the network runs in the background. The log will be generated in LOGx/log.txt"
export RANK_SIZE=$1
EPOCH_SIZE=$2
LR=$3
DATASET=$4
PRE_TRAINED=$6
PRE_TRAINED_EPOCH_SIZE=$7
export MINDSPORE_HCCL_CONFIG_PATH=$5
for((i=0;i<RANK_SIZE;i++))
do
export DEVICE_ID=$i
rm -rf LOG$i
mkdir ./LOG$i
cp ../*.py ./LOG$i
cp -r ../src ./LOG$i
cd ./LOG$i || exit
export RANK_ID=$i
echo "start training for rank $i, device $DEVICE_ID"
env > env.log
if [ $# == 5 ]
then
python train.py \
--distribute=1 \
--lr=$LR \
--dataset=$DATASET \
--device_num=$RANK_SIZE \
--device_id=$DEVICE_ID \
--epoch_size=$EPOCH_SIZE > log.txt 2>&1 &
fi
if [ $# == 7 ]
then
python train.py \
--distribute=1 \
--lr=$LR \
--dataset=$DATASET \
--device_num=$RANK_SIZE \
--device_id=$DEVICE_ID \
--pre_trained=$PRE_TRAINED \
--pre_trained_epoch_size=$PRE_TRAINED_EPOCH_SIZE \
--epoch_size=$EPOCH_SIZE > log.txt 2>&1 &
fi
cd ../
done