You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/model_zoo/official/gnn/gat/export.py

72 lines
2.7 KiB

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""export checkpoint file into air, mindir and onnx models"""
import argparse
import numpy as np
from mindspore import Tensor, context, load_checkpoint, export
from src.gat import GAT
from src.config import GatConfig
parser = argparse.ArgumentParser(description="GAT export")
parser.add_argument("--device_id", type=int, default=0, help="Device id")
parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
parser.add_argument("--dataset", type=str, default="cora", choices=["cora", "citeseer"], help="Dataset.")
parser.add_argument("--file_name", type=str, default="gat", help="output file name.")
parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format")
parser.add_argument("--device_target", type=str, default="Ascend",
choices=["Ascend", "GPU", "CPU"], help="device target (default: Ascend)")
args = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
if args.device_target == "Ascend":
context.set_context(device_id=args.device_id)
if __name__ == "__main__":
if args.dataset == "citeseer":
feature_size = [1, 3312, 3703]
biases_size = [1, 3312, 3312]
num_classes = 6
else:
feature_size = [1, 2708, 1433]
biases_size = [1, 2708, 2708]
num_classes = 7
hid_units = GatConfig.hid_units
n_heads = GatConfig.n_heads
feature = np.random.uniform(0.0, 1.0, size=feature_size).astype(np.float32)
biases = np.random.uniform(0.0, 1.0, size=biases_size).astype(np.float64)
feature_size = feature.shape[2]
num_nodes = feature.shape[1]
gat_net = GAT(feature_size,
num_classes,
num_nodes,
hid_units,
n_heads,
attn_drop=0.0,
ftr_drop=0.0)
gat_net.set_train(False)
load_checkpoint(args.ckpt_file, net=gat_net)
gat_net.add_flags_recursive(fp16=True)
export(gat_net, Tensor(feature), Tensor(biases), file_name=args.file_name, file_format=args.file_format)