You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
72 lines
2.7 KiB
72 lines
2.7 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""export checkpoint file into air, mindir and onnx models"""
|
|
import argparse
|
|
import numpy as np
|
|
|
|
from mindspore import Tensor, context, load_checkpoint, export
|
|
|
|
from src.gat import GAT
|
|
from src.config import GatConfig
|
|
|
|
parser = argparse.ArgumentParser(description="GAT export")
|
|
parser.add_argument("--device_id", type=int, default=0, help="Device id")
|
|
parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
|
|
parser.add_argument("--dataset", type=str, default="cora", choices=["cora", "citeseer"], help="Dataset.")
|
|
parser.add_argument("--file_name", type=str, default="gat", help="output file name.")
|
|
parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format")
|
|
parser.add_argument("--device_target", type=str, default="Ascend",
|
|
choices=["Ascend", "GPU", "CPU"], help="device target (default: Ascend)")
|
|
args = parser.parse_args()
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
|
|
if args.device_target == "Ascend":
|
|
context.set_context(device_id=args.device_id)
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
|
if args.dataset == "citeseer":
|
|
feature_size = [1, 3312, 3703]
|
|
biases_size = [1, 3312, 3312]
|
|
num_classes = 6
|
|
else:
|
|
feature_size = [1, 2708, 1433]
|
|
biases_size = [1, 2708, 2708]
|
|
num_classes = 7
|
|
|
|
hid_units = GatConfig.hid_units
|
|
n_heads = GatConfig.n_heads
|
|
|
|
feature = np.random.uniform(0.0, 1.0, size=feature_size).astype(np.float32)
|
|
biases = np.random.uniform(0.0, 1.0, size=biases_size).astype(np.float64)
|
|
|
|
feature_size = feature.shape[2]
|
|
num_nodes = feature.shape[1]
|
|
|
|
gat_net = GAT(feature_size,
|
|
num_classes,
|
|
num_nodes,
|
|
hid_units,
|
|
n_heads,
|
|
attn_drop=0.0,
|
|
ftr_drop=0.0)
|
|
|
|
gat_net.set_train(False)
|
|
load_checkpoint(args.ckpt_file, net=gat_net)
|
|
gat_net.add_flags_recursive(fp16=True)
|
|
|
|
export(gat_net, Tensor(feature), Tensor(biases), file_name=args.file_name, file_format=args.file_format)
|