You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
mindspore/mindspore/dataset/engine/iterators.py

290 lines
9.1 KiB

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Built-in iterators.
"""
from abc import abstractmethod
import copy
import weakref
from mindspore._c_dataengine import DEPipeline
from mindspore._c_dataengine import OpName
from mindspore import log as logger
from . import datasets as de
ITERATORS_LIST = list()
def _cleanup():
"""Release all the Iterator."""
for itr_ref in ITERATORS_LIST:
itr = itr_ref()
if itr is not None:
itr.release()
def alter_tree(node):
"""Traversing the python Dataset tree/graph to perform some alteration to some specific nodes."""
if not node.children:
return _alter_node(node)
converted_children = []
for input_op in node.children:
converted_children.append(alter_tree(input_op))
node.children = converted_children
return _alter_node(node)
def _alter_node(node):
"""DEPRECATED"""
# Please check ccsrc/dataset/engine/opt for tree transformation.
if isinstance(node, de.MapDataset):
if node.python_multiprocessing:
# Bootstrap can only be performed on a copy of the original dataset node.
# Bootstrap on original dataset node will make all iterators share the same process pool
node.iterator_bootstrap()
return node
class Iterator:
"""
General Iterator over a dataset.
Attributes:
dataset: Dataset to be iterated over
"""
def __init__(self, dataset):
ITERATORS_LIST.append(weakref.ref(self))
# create a copy of tree and work on it.
self.dataset = copy.deepcopy(dataset)
self.dataset = alter_tree(self.dataset)
if not self.__is_tree():
raise ValueError("The data pipeline is not a tree (i.e., one node has 2 consumers)")
self.depipeline = DEPipeline()
# for manifest temporary use
self.__batch_node(self.dataset, 0)
root = self.__convert_node_postorder(self.dataset)
self.depipeline.AssignRootNode(root)
self.depipeline.LaunchTreeExec()
self._index = 0
def __is_tree_node(self, node):
"""Check if a node is tree node."""
if not node.children:
if len(node.parent) > 1:
return False
if len(node.parent) > 1:
return False
for input_node in node.children:
cls = self.__is_tree_node(input_node)
if not cls:
return False
return True
def __is_tree(self):
return self.__is_tree_node(self.dataset)
@staticmethod
def __get_dataset_type(dataset):
"""Get the dataset type."""
op_type = None
if isinstance(dataset, de.ShuffleDataset):
op_type = OpName.SHUFFLE
elif isinstance(dataset, de.MindDataset):
op_type = OpName.MINDRECORD
elif isinstance(dataset, de.BatchDataset):
op_type = OpName.BATCH
elif isinstance(dataset, de.BucketBatchByLengthDataset):
op_type = OpName.BUCKETBATCH
elif isinstance(dataset, de.SyncWaitDataset):
op_type = OpName.BARRIER
elif isinstance(dataset, de.ZipDataset):
op_type = OpName.ZIP
elif isinstance(dataset, de.ConcatDataset):
op_type = OpName.CONCAT
elif isinstance(dataset, de.MapDataset):
op_type = OpName.MAP
elif isinstance(dataset, de.FilterDataset):
op_type = OpName.FILTER
elif isinstance(dataset, de.RepeatDataset):
op_type = OpName.REPEAT
elif isinstance(dataset, de.SkipDataset):
op_type = OpName.SKIP
elif isinstance(dataset, de.TakeDataset):
op_type = OpName.TAKE
elif isinstance(dataset, de.ImageFolderDatasetV2):
op_type = OpName.IMAGEFOLDER
elif isinstance(dataset, de.GeneratorDataset):
op_type = OpName.GENERATOR
elif isinstance(dataset, de.TransferDataset):
op_type = OpName.DEVICEQUEUE
elif isinstance(dataset, de.RenameDataset):
op_type = OpName.RENAME
elif isinstance(dataset, de.TFRecordDataset):
op_type = OpName.TFREADER
elif isinstance(dataset, de.ProjectDataset):
op_type = OpName.PROJECT
elif isinstance(dataset, de.MnistDataset):
op_type = OpName.MNIST
elif isinstance(dataset, de.ManifestDataset):
op_type = OpName.MANIFEST
elif isinstance(dataset, de.VOCDataset):
op_type = OpName.VOC
elif isinstance(dataset, de.CocoDataset):
op_type = OpName.COCO
elif isinstance(dataset, de.Cifar10Dataset):
op_type = OpName.CIFAR10
elif isinstance(dataset, de.Cifar100Dataset):
op_type = OpName.CIFAR100
elif isinstance(dataset, de.CelebADataset):
op_type = OpName.CELEBA
elif isinstance(dataset, de.RandomDataset):
op_type = OpName.RANDOMDATA
elif isinstance(dataset, de.TextFileDataset):
op_type = OpName.TEXTFILE
elif isinstance(dataset, de.BuildVocabDataset):
op_type = OpName.BUILDVOCAB
elif isinstance(dataset, de.CLUEDataset):
op_type = OpName.CLUE
else:
raise ValueError("Unsupported DatasetOp")
return op_type
# Convert python node into C node and add to C layer execution tree in postorder traversal.
def __convert_node_postorder(self, node):
op_type = self.__get_dataset_type(node)
c_nodes = self.depipeline.AddNodeToTree(op_type, node.get_args())
for py_child in node.children:
c_child = self.__convert_node_postorder(py_child)
self.depipeline.AddChildToParentNode(c_child, c_nodes["bottom"])
return c_nodes["top"]
def __batch_node(self, dataset, level):
"""Recursively get batch node in the dataset tree."""
if isinstance(dataset, de.BatchDataset):
return
for input_op in dataset.children:
self.__batch_node(input_op, level + 1)
@staticmethod
def __print_local(dataset, level):
"""Recursively print the name and address of nodes in the dataset tree."""
name = dataset.__class__.__name__
ptr = hex(id(dataset))
for _ in range(level):
logger.info("\t", end='')
if not dataset.children:
logger.info("-%s (%s)", name, ptr)
else:
logger.info("+%s (%s)", name, ptr)
for input_op in dataset.children:
Iterator.__print_local(input_op, level + 1)
def print(self):
"""Print the dataset tree"""
self.__print_local(self.dataset, 0)
def release(self):
if hasattr(self, 'depipeline') and self.depipeline:
del self.depipeline
@abstractmethod
def get_next(self):
pass
def __next__(self):
data = self.get_next()
if not data:
if self._index == 0:
logger.warning("No records available.")
raise StopIteration
self._index += 1
return data
def get_output_shapes(self):
return [t for t in self.depipeline.GetOutputShapes()]
def get_output_types(self):
return [t for t in self.depipeline.GetOutputTypes()]
def get_dataset_size(self):
return self.depipeline.GetDatasetSize()
def get_batch_size(self):
return self.depipeline.GetBatchSize()
def get_repeat_count(self):
return self.depipeline.GetRepeatCount()
def num_classes(self):
return self.depipeline.GetNumClasses()
def __deepcopy__(self, memo):
return self
class DictIterator(Iterator):
"""
The derived class of Iterator with dict type.
"""
def __iter__(self):
return self
def get_next(self):
"""
Returns the next record in the dataset as dictionary
Returns:
Dict, the next record in the dataset.
"""
return {k: v.as_array() for k, v in self.depipeline.GetNextAsMap().items()}
class TupleIterator(Iterator):
"""
The derived class of Iterator with list type.
"""
def __init__(self, dataset, columns=None):
if columns is not None:
if not isinstance(columns, list):
columns = [columns]
dataset = dataset.project(columns)
super().__init__(dataset)
def __iter__(self):
return self
def get_next(self):
"""
Returns the next record in the dataset as a list
Returns:
List, the next record in the dataset.
"""
return [t.as_array() for t in self.depipeline.GetNextAsList()]